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Summary. Centaurium erythraea (common centaury) is a medicinal plant with extraordinary developmental plas-
ticity in vitro that is used as a model organism for studying in vitro morphogenesis in our lab. Several experimental 
lines of evidence have identified arabinogalactan proteins (AGPs) as one of the key players involved in centaury 
morphogenesis; however, the role of specific genes has yet to be determined. AGPs are ubiquitous plant cell surface 
glycoproteins associated with various physiological functions. AGP sequences are characterized by the presence of 
non-continuous hydroxyproline residues, which serve as O-glycosylation anchor sites for branched arabinogalac-
tans. Due to a biased amino acid composition rich in disorder-promoting amino acids, AGP sequences lack a stable 
structure and consequently have lessened evolutionary constraints. Therefore, homology-based approaches to AGP 
sequence mining have limited success. We have recently developed a bioinformatics pipeline for AGP sequence 
mining, ragp, which exploits their key feature – the presence of hydroxyprolines. This pipeline combines estimation 
of proline hydroxylation based on local sequence context by a machine learning model with a flexible motif search. 
After applying this pipeline to the centaury transcriptome, AGP regions were found to associate with a variety of con-
served domains. Here we introduce a streamlined way to train models for prediction of Pro hydroxylation, analyze 
important protein sequence features determining Pro hydroxylation status, present some of the AGP types found in 
centaury and discuss model limitations and future prospects.

Keywords: arabinogalactan proteins, centaury, hydroxyproline, hydroxyproline rich glycoproteins, machine learn-
ing, ragp, sequence mining.

INTRODUCTION

Arabinogalactan proteins (AGPs) are ubiquitous plant 
cell surface glycoproteins belonging to the hydroxyproline 
rich glycoprotein (HRGP) superfamily (Ellis et al. 2010). 
HRGPs are involved in a variety of physiological functions 
during plant growth and development, signaling, environ-
mental sensing and response to external stimuli such as in-
fection and wounding (Deepak et al. 2010; Kieliszewski et al. 
2010). The HRGP superfamily members are characterized 
by the presence of 4-hydroxyproline (Hyp, O) produced via 
hydroxylation of proline residues by prolyl 4-hydroxylases 
during protein maturation. Unlike many other post-trans-
lational modifications, proline hydroxylation is irreversible, 

and common in animals, plants and microbes (Gorres and 
Raines 2010). In plants, these hydroxyprolines serve as O-
glycosylation sites, while the local sequence context deter-
mines the type of glycosylation. Based on glycosylation type, 
HRGPs are usually divided into: (1) extensins, characterized 
by the presence of continuous O stretches, usually preceded 
by serine (e.g., SOOO), which are glycosylated by short and 
linear oligosaccharides made from L-arabinose (Ara); (2) 
arabinogalactan proteins, characterized by clustered non-
continuous dipeptide motifs of O with A, S, T, G and V (e.g. 
OA, AO, OT, TO etc.), which are glycosylated by branched 
type II arabino-3,6-galactan polysaccharides, and (3) pro-
line-rich proteins, characterized by OOV[QK], OOVX[KT], 
and KKOCOO motifs which are less extensively glycosylated 
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with short Ara residues (Johnson et al. 2017). Hybrid and 
chimeric HRGPs have also been identified; the former con-
tain mixed characteristics of the mentioned HRGP classes, 
whereas the latter contain HRGP features associated with 
specific protein domains. For instance, AGP regions have 
been shown to associate with fasciclin-like, plastocyanin-like 
(early nodulin-like) and other domains (Ellis et al. 2010).

Due to a biased amino acid composition rich in O as 
well as polar/charged residues, which are disorder-promot-
ing, HRGP proteins/regions lack a well-defined three-di-
mensional structure and are intrinsically disordered proteins 
(IDP). This property of HRGPs has resulted in a larger se-
quence space and accelerated evolution (Johnson et al. 2017). 
As a consequence, HRGP sequences are usually not identified 
by homology search (e.g., BLAST or diamond), but by their 
biased amino composition and the presence of described 
motifs, combined with a predicted N-terminal secretory sig-
nal (N-sp), because HRGPs are extracellular proteins (Show-
alter et al. 2010, Johnson et al. 2017). These approaches are 
confined to the identification of prototypical HRGPs, while 
chimeric sequences, which lack a biased amino acid com-
position, are usually identified by the presence of protein 
domains known to associate with HRGPs, and specifically 
AGPs. However, this is limited to sequences containing do-
mains already known to associate with AGP regions.

In an attempt to expand the AGP sequence search 
space beyond sequences with a biased composition, Ma et 
al. (2017) developed a bioinformatics pipeline which com-
bines identification of clustered noncontinuous dipeptides 
characteristic for AGPs with several other sequence features, 
which led to the discovery that AGP-like regions are com-
monly associated with a wide range of protein domains, such 
as the receptor-kinase domain, X8 domain, leucine rich re-
peat motifs and glycosyl hydrolase-like among others. To 
facilitate HRGP sequence mining, and to make it available 
to a broader audience, we have developed the ragp R pack-
age (Dragićević et al. 2020, https://github.com/missuse/ragp, 
https://missuse.github.io/ragp/). In addition to the usual 
HRGP mining toolbox, such as prediction of N-sp, motif 
and amino acid bias classification (Johnson et al. 2017), as 
well as a search for clustered AG motifs, ragp incorporates 
an additional filtering layer – machine learning (ML) pre-
diction of proline hydroxylation probability, thus exploiting 
the key HRGP feature. Only sequences predicted to con-
tain several O are further analyzed. In addition, searches for 
clustered AG motifs are able to use information provided by 
this model, so instead of searching for AG motifs contain-
ing P, ragp allows users to search for AG motifs containing 
predicted O.

Centaurium erythraea Rafn (common or European 
centaury) is a medicinal plant, characterized by a vigorous 

regeneration potential and extraordinary developmental 
plasticity in vitro. Centaury has been used for decades as 
a model organism for studying morphogenetic processes 
in vitro at the Department for Plant Physiology (Simonović 
et al. 2021). Studies based on interaction of AGPs with β-D- 
glucosyl Yariv reagent, which selectively binds AGPs causing 
their precipitation and inactivation (Trifunović et al. 2014; 
Simonović et al. 2015), or with fluorescent antibodies that 
bind AGP glycan epitopes (Filipović et al. 2021), have linked 
AGPs with somatic embryogenesis and shoot organogenesis 
in centaury. However, the roles of specific genes have yet 
to be found. The first step is identification of sequences of 
potential interest.

In this paper we: (1) present the diversity of chimeric 
AGP sequences identified in centaury; (2) introduce a more 
efficient and streamlined ML pipeline for building models 
for proline hydroxylation prediction, which can accommo-
date reproducible rapid retraining on new training data; (3) 
dissect the model predictions, thus providing insight into 
what local protein sequence features are important for pro-
line hydroxylation in plants, and (4) provide suggestions for 
future directions.

MATERIALS AND METHODS

AGP mining and annotation

AGP sequence mining was performed as recommended 
in Dragićević et al. (2020) with one modification: the number 
of amino acids separating AG motifs was set to four instead 
of the recommended ten, in order to perform a slightly more 
stringent scan. As a starting point, the complete predicted 
protein sequences from the de novo assembled centaury tran-
scriptome (Ćuković et al. 2020) were used. Domain annota-
tion was performed using hmmer 3.3.2 (Eddy 2011) with 
Pfam34 database (http://ftp.ebi.ac.uk/pub/databases/Pfam/
releases/Pfam34.0/). Transmembrane region annotation 
was performed using Phobius (Käll et al. 2007), while glyco-
sylphosphatidylinositol (GPI) anchor sites were annotated 
using PredGPI (Pierleoni et al. 2008) via the ragp interface 
(Dragićević et al. 2020).

Machine learning pipeline creation and tuning

The same training/test sets and protein sequence fea-
tures were utilized as in Dragićević et al. (2020) in order to 
achieve performance comparability (Fig. 1A, B). The ML 
pipeline was created using the mlr3 set of packages (Lang et 
al. 2019). The pipeline consisted of: inferring class weights; 
filter layer; learner layer and classification threshold tuning 
(Fig. 1C). Class weights were set due to disbalance in the 
class frequencies and were equal to the ratio of the class-
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es based on a classification threshold that was treated as a 
tunable hyper-parameter. The whole pipeline was tuned via 
random search for 2000 iterations, with early termination if 
performance did not improve for 200 iterations, using five-
fold cross validation. The metric used for optimization was 
balanced accuracy (the mean of sensitivity and specificity). 
During the five-fold cross validation, all k-mers from the 
same protein were present in the same fold (block resam-
pling), and the ratio of the classes (Hyp/Pro) was kept similar 
in each resampling instance (stratification).

Model interpretation

Model agnostic interpretation of model behavior was 
performed using the DALEX package (Biecek 2018). Permu-
tation feature importance was calculated based on reduction 

es. The filter layer contained the following branches: pass 
through - does not filter or transform the feature set, IG - 
information gain univariate feature filter (Quinlan 1986), 
MRMR - minimum redundancy maximum relevance uni-
variate feature filter (Peng et al. 2005), DISR - double input 
symmetrical relevance univariate feature filter (Meyer et al. 
2008), RF importance - feature filter based on feature im-
portance of a random forest learner (Breiman 2001) fit with 
default parameters and 500 trees. In each tuning instance, 
only one path through the graph was evaluated, so selection 
of the best path was performed during tuning. Each of the 
filters was set to pass between 40 and 400 features/dimen-
sions – treated as a tunable hyper-parameter. The learner 
layer consisted of an xgboost algorithm (Chen and Guestrin 
2016), with multiple tuned hyper-parameters (Fig. 1D). The 
ML algorithm output probabilities were converted to class-

Fig. 1. Schematic of a streamlined ML pipeline for training the hydroxyproline prediction model. A, identification of protein sequence 
regions with sufficient experimental evidence based on Swiss-Prot and literature data; extraction of local 21-mer sequence with 10 amino 
acids on each side of the target prolines as well as hydroxylation state of the target prolines; B, encoding the local protein sequences into 
various numeric representations; C, machine learning pipeline (see Materials and Methods for clarification); D, hyper parameter search 
space and optimized values.
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in performance measured as AUC; when the corresponding 
feature was permuted, this was repeated 10 times. Partial 
dependence plots (Friedman 2001) were employed in order 
to display a marginalized version of the learned function in 
a lower dimensional space.

RESULTS AND DISCUSSION

Diversity of centaury AGPs

The ragp pipeline identified 501 unique complete pro-
tein sequences that contain at least three AG motifs con-
taining O, no more than four amino acids apart in the cen-
taury transcriptome. Of these, 278 protein sequences had 
at least one Pfam domain associated with it, while 134 had 
multiple Pfam domains. AGP regions are associated with 
an array of different protein architectures, a subset of which 
is presented in Fig. 2. AGP regions were detected prior to 
the transmembrane helix in multiple centaury receptor-like 
kinases. AGP spans were also found in cell wall hydrolytic 
enzymes, such as cysteine proteases and glycosyl hydrolases, 
associated with domains of unknown function, DUF1191 
and DUF1682, with L-ascorbate oxidase-like proteins, as 
well as with dirigent-like domains. As expected, AGP regions 
are usually located outside of domains (conserved regions), 
except in the case of arabinogalactan peptide and COBRA-
like domains (Fig. 2). Arabinogalactan peptide domain is a 
signature domain of a class of AG peptides, and is the only 
domain that we know of which is exclusively found associ-
ated with AGP regions (Simonović et al. 2016). Experimental 
confirmation is needed for COBRA-like proteins; however, 
they are attached to the membrane by GPI anchors (Roudier 
et al. 2002) like many AGPs (Ellis et al. 2010), and contain 
multiple N-glycosylation motifs (Asn–X–Ser/Thr), so it 
would not be surprising if they were also glycosylated with 
branched arabinogalactans. This analysis indicates that gly-
cosylation with branched arabinogalactan chains is common 
in cell wall proteins, many of which have central roles in cell 
wall metabolism, ranging from signal transduction, lignan 
and lignin biosynthesis, pectate hydrolysis, cellulose crystal-
lization and others. 

An updated pipeline for prediction of proline 
hydroxylation

The development of the mlr3 (Lang et al. 2019) R pack-
age for efficient, object-oriented programming on the build-
ing blocks of machine learning has enabled unprecedented 
freedom in ML pipeline construction in R. Using the de-
scribed framework, we constructed an updated ML pipeline 
for hydroxyproline probability prediction which can be easily 
and efficiently trained on an existing or expanded protein 

Fig. 2. Diagram of protein architectures of selected ragp-mined 
chimeric AGPs from centaury transcriptome. N-sp – N-terminal 
secretion signal peptide as predicted by SignalP5 (Armenteros et 
al. 2019); TM – transmembrane region as predicted by Phobius 
(Käll et al. 2007); hyp – predicted hydroxyprolines via ragp 
(Dragićević et al. 2020); AG span – ragp hyp-aware scan of AGP 
motifs, where three or more motifs no more than four amino acids 
apart were considered, while motifs which were part of continuous 
stretches of three or more hyp were not considered; omega site – 
GPI anchor sites as predicted by PredGPI (Pierleoni et al. 2008). 
Domains were annotated using hmmscan 3.3.2 (Eddy 2011) using 
Pfam 34 data base of protein domains.
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sequence training set (Fig. 1). This ML pipeline achieves a 
balanced accuracy of 0.983 (sensitivity: 1 and specificity: 
0.966, Fig. 3A) when using the same training/test sets and 
local sequence numerical representations as in Dragićević 
et al. (2020), which is comparable to the performance of the 
model incorporated in the ragp package, with the advantage 
of reducing the training time to several hours on a desktop 
PC. The main difference compared to the model incorpo-
rated in ragp is abandonment of computationally demanding 
wrapper feature selection which applies model tuning for 
every feature subset, unification of the filter methods so that 
they compete within the same ML graph, and jointly tuning 
the classification threshold with other hyper parameters (Fig. 
1). The pipeline can be easily extended with the addition of 
new blocks, such as data transformations, additional filters 
and learners. The 2000 iterations of random search serve to 
inspect a large hierarchical feature space including different 
learner and filter hyper-parameters, as well as to probe paths 
through the directed graph, while the early termination fea-
ture serves to reduce training time if good hyper parameter 
combinations are found early during the search. The same 
or similar pipeline can be used to predict practically any fea-
ture based on local protein sequence given an appropriate 
training set. 

Local sequence features which govern proline hydroxyl-
ation in plants

While the primary interest of predictive modeling is 
to generate accurate predictions, a secondary interest is to 
understand why the model works. In the current applica-
tion, it might be possible to gain insights into what local 
sequence features determine proline hydroxylation status. In 
an attempt to understand the reasoning behind the obtained 
predictions, a model agnostic approach was used where the 
variables were ranked by importance based on reduction of 
model performance when each variable is permuted (Fig. 
3B). After obtaining variable importance, the distribution 
of the top five features was examined per target class (Fig. 
3C), while partial dependence plots showed the marginal-
ized dependence between the target class and the top five 
important features (Fig. 3D). The relationship between the 
kernel density (Fig. 3C) and partial dependence (Fig. 3D) of 
the top five features is evident.

The feature with the highest importance, “Grantham.
Xr.P” (Fig. 3B) belongs to the quasi sequence order de-
scriptor (Chou 2000) derived from the amino acid dis-
tance matrix proposed by Grantham (1974). It is calculated 

based on the sequence order coupling 
𝜏𝜏𝑑𝑑 =  ∑ (𝑑𝑑𝑖𝑖,𝑖𝑖+𝑑𝑑)2

𝑁𝑁−𝑑𝑑

𝑖𝑖=1
 
 where 

d=1, 2,…maxlag and di,i+d  is the distance between the two 
amino acids at position i and i+d; for each amino acid 

type, a quasi-sequence-order descriptor can be defined as 
𝑋𝑋𝑟𝑟 =  𝑓𝑓𝑟𝑟

∑ 𝑓𝑓𝑟𝑟 +  𝜔𝜔 ∑ 𝜏𝜏𝑑𝑑
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑=1

20
𝑟𝑟=1

    where fr is the normalized occurrence 
for amino acid type r and ω is a weighting factor (ω = 0.1). 
Increase in the variable “Grantham.Xr.P” is interpreted by 
the model as in increase in the probability of Pro hydrox-
ylation (Fig. 3D), thus it can be concluded that an increase 
in Pro frequency (increase in fr where r = Pro), as well as 
higher content of amino acids which are close to Pro in the 

Grantham distance matrix (A, T and G) in k-mers (lower 
𝜏𝜏𝑑𝑑 =  ∑ (𝑑𝑑𝑖𝑖,𝑖𝑖+𝑑𝑑)2

𝑁𝑁−𝑑𝑑

𝑖𝑖=1
 ) favors Pro hydroxylation. Two of the five most 

important features are associated with the amino acid pre-
ceding the target Pro (features CHAM820102_-1 and F4_-1, 
Fig. 2B), leading to the conclusion that this position is critical 
for Pro hydroxylation. The “CHAM820102” attribute repre-
sents the free energy of solution in water (Charton M and 
Charton BI 1982) and values lower than 0 (amino acids P, 
R, G, S, A) are associated with an increase in hydroxylation 
probability (Fig. 3D). While Feature “F4_-1” represents one 
to one mapping of Atchley factor 4 (Atchley et al. 2005) to 
the amino acid preceding the target Pro. Values above -0.17 
of this feature, which are associated with the amino acids N, 
E, I, P, R, S, T, G, V, L and A, positively impact the probability 
of proline hydroxylation (Fig. 3D).

Larger than 0.3 values of the normalized Moreau-Broto 
amino acid autocorrelation of “CHAM820102” with lag = 
1 and 3 respectively, are associated with an increase in the 
probability of Pro hydroxylation (Fig. 2D). These param-

eters are calculated by ( ) = =1 
∑ +

−d

d
d

−d
  where lag d = 1, 3, 

while Pi and Pi+1 represent the centralized and standardized 
“CHAM820102” attribute of the amino acids at position i 
and i+d, while N is the number of amino acids in the k-mer. 
It is not simple to draw conclusions from this relationship, 
therefore we performed a simulation experiment where we 
generated 1 million random 21-mer protein sequences with 
P in the middle. Approximately 5.6% of these sequences pro-
duced a value of “MB_CHAM820102.lag1” higher than 0.3, 
while 7.4% had a value of “MB_CHAM820102.lag3” higher 
than 0.3, while ~2.4% of these sequences satisfied both re-
quirements. The sequences that satisfied both requirements 
had a higher occurrence of P (1.49 per sequence on aver-
age, excluding the target middle P which is present in every 
sequence), R (1.24 per sequence on average), G (1.12) and 
S (1.11), while the most common dipeptides were PP, RP, 
PR, GP, PS, SP, PG, PA and AP, the latter six are AG motifs. 
Based on the top five features it seems that the model has 
managed to learn local sequence features which were already 
associated with HRGP/AGPs such as local stretches of P 
characteristic of extensins, or AG motifs. While it is slightly 

8    Biologia Serbica 43



Arabinogalactan protein mining and diversity - the case of Centaurium erythraea 

Fig. 3. Performance and interpretation of the model. A, receiver operating characteristic curve along with several performance metrics of 
hydroxyproline prediction pipeline based on the validation protein sequences; B, permutation feature importance of the top 10 features, 
calculated based on reduction in performance measured as AUC, when the corresponding feature was permuted. Bar length represents the 
mean loss of performance while boxplots show the uncertainty associated with permutations (10 permutations used); C, kernel density plots 
of the top five features grouped by hydroxylation status (indicated in the color legend); D, partial dependence plots of the top five features.
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anti-climactic to conclude that the model has learned some-
thing we already knew, it is also reassuring both regarding 
our presumptions and confidence in the model predictions. 
In addition, we should mention the model uses around 230 
features to predict P hydroxylation and not just the top five 
most important considered here.

Model limitations and future prospects

The current approach to ML hydroxyproline prediction 
has several limitations. Due to use of symmetrical 21-mers, 
the hydroxylation status of P in the ten N- or C-terminal 
amino acids cannot be estimated. In ragp this is compen-
sated by training supplementary models on shorter k-mer 
spans sacrificing some accuracy for the ability to predict 
N- and C-terminal prolines. The other limitation which is 
not easily compensated for is the relatively limited set of la-
beled protein sequences, containing 225 protein sequences 
with 1093 non-redundant 21-mers (182 hydroxyprolines and 
911 prolines), which limits optimism for model generaliza-
tion power. The growth of this set depends on experimental 
determination of hydroxyproline positions in plant protein 
sequences, which is expensive and time consuming. A po-
tential solution to increase how well the trained models gen-
eralize, which does not rely on new labeled data, is the use of 
protein language models (Elnaggar et al. 2020), which were 
pretrained on a large corpus of protein sequences in a self-
supervised fashion by randomly masking a portion of the 
amino acids in the input and training the model to predicted 
the masked residues. These models can be used for protein 
feature extraction or be fine-tuned on downstream tasks. We 
are currently exploring this strategy for hydroxyproline/pro-
line classification.
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