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Summary. Diabetes mellitus and its complications represent a global socio-economic burden with more than 450 
million people affected worldwide. Diabetic retinopathy is present in over one-third of people living with diabetes 
and represents a leading cause of visual impairment among the working-age population. The integrity of the blood-
retinal barrier (BRB) is essential for retinal neuronal health. Barrier breakdown results in fluid accumulation in the 
retina, macular edema, neuronal death, and vision loss. BRB breakdown may result from a disruption of the tight 
junctions, an up-regulation of vesicular transport across the inner or outer BRB, or by degenerative changes to the 
endothelial cells, the pericytes, and glia. The present review aims to discuss mediators of BRB dysfunction and mo-
lecular mechanisms of BRB breakdown in diabetes mellitus and the emerging evidence that patients with diabetic 
retinopathy might benefit from melatonin treatment. The data suggest that melatonin might protect ocular tissues 
by decreasing the production of reactive oxygen species (ROS) and pro-inflammatory mediators implicated in BRB 
breakdown, such as vascular endothelial growth factor (VEGF), tumor necrosis factor-α (TNF-α), and interleukin-
1β (IL-1β). Therefore, melatonin might be considered for treatment of ocular diseases characterized by BRB, al-
though, the topic remains under investigation.
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INTRODUCTION

With more than 450 million people living with diabetes 
worldwide, it represents a global socio-economic burden. 
These numbers are expected to increase to 693 million by 
2045 (Cho et al. 2018). Diabetic Retinopathy (DR) is a spe-
cific neurovascular complication of both type 1 and 2 diabe-
tes, whose progression strongly correlates with the duration 
of diabetes and glycemic control (Solomon et al. 2017). DR 
is present in over one-third of people living with diabetes 
and represents the leading cause of visual impairment and 
preventable vision loss among the working-age population 
(Cheung et al. 2010; Yau et al. 2012). The incidence of vi-
sion-threatening stages of DR is highest in low and middle-
income countries, and the number of diabetes mellitus cases 
are expected to increase 69% by 2030 (Shaw et al. 2010). Vi-

sion loss associated with DR is usually due to macular edema 
and neovascularization (Roy et al. 2017). 

The retina has the highest oxygen consumption and 
metabolic activity in the human body, supported by unique 
dual circulation (Klaassen et al. 2013). The blood-retinal bar-
rier (BRB) represents a selective physiological barrier that 
maintains homeostasis in the neural retina and restricts the 
entry of molecules and cells found in the blood. BRB has an 
inner and an outer component. The inner BRB surrounds 
all retinal blood vessels and is formed by tight junctions that 
seal the intercellular spaces between the retinal endothelial 
cells, while the outer component is formed by tight junctions 
between the retinal pigmented epithelial cells (Hildebrand 
and Fielder 2011). Small lipophilic molecules can, however, 
diffuse across the barriers.

The integrity of BRB is essential for retinal neuronal 
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health. The term neurovascular unit refers to the functional 
relationship between neurons, glial cells, and blood vessels 
in the retina. These cells work in coordination to integrate 
retinal blood flow with metabolic activity (Gardner and Da-
vila 2017). In case of barrier breakdown, excess fluid accu-
mulates in the retina resulting in macular edema, neuronal 
death and vision loss. BRB breakdown (Fig. 1) may result 
from a disruption of the tight junctions, an up-regulation 
of vesicular transport across the inner or outer BRB, or by 
degenerative changes to the endothelial cells, the pericytes, 
and glia (Klaassen et al. 2013).

In recent years, increasing insight in the molecular 
mechanisms of BRB breakdown led to the development 
of new innovative treatments for DR (Cheung et al. 2014; 
Dehdashtian et al. 2018; Djordjevic et al. 2018; Scuderi et 
al. 2019). 

The present review aims to discuss mediators of BRB 
dysfunction, the molecular mechanisms of BRB break-
down in diabetes mellitus and the emerging evidence 
that patients with diabetic retinopathy might benefit from 
melatonin treatment.

SEARCH FOR RELEVANT ARTICLES

Relevant articles included in this review were identified 
by searching the PubMed database using the search terms: 
diabetic retinopathy AND blood-retinal barrier breakdown 
AND mechanism/diabetic retinopathy AND melatonin). 
Only studies published in English in the last 10 years were 
included. The reference lists of relevant articles were also 
reviewed in order to identify additional appropriate articles. 
The abstracts of all derived papers were evaluated by two 
reviewers (B. Djordjevic and J. Milenkovic), and papers con-
sidered not to be relevant to the review’s aim were excluded. 
Studies and reviews related to the mediators and mechanism 
of blood-retinal barrier breakdown were included if they 
dealt with the effect of vascular endothelial growth factor 
(VEGF), tumor necrosis factor-α (TNF-α) and interelukin-1β 
(IL-1β). Most of the included studies evaluated the effects of 
melatonin in animal models or in vitro. There was no re-
striction to any dosage, duration, or administration route of 
melatonin. Observational studies in humans were included 
since randomized trials were not present in the search results.

The search retrieved 170 (130+40) records following 

Fig. 1. Degradation of neurovascular unit and BRB breakdown in the diabetic retinopathy. Legend: Mo, monocyte; GJ, gap junctions; Ec, 
endothelial cell; Pc, pericyte; Mg, microglia; AC, astrocyte; Gc, retinal ganglion cell; Pr, photoreceptors; Bc, bipolar cells; VEGF, vascular 
endothelial growth factor; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β. This figure was drawn using the vector image bank of 
Servier Medical Art (http://smart.servier.com/). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 
Unported License (https://creativecommons.org/licenses/by/3.0/).
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up-regulates VEGF and increases its bio-availability.
TNF-α is a pro-inflammatory cytokine that can be syn-

thesized by Müller cells, activated macrophages, glial cells, 
retinal ganglion cells, and neurons (Tarr et al. 2013; Gui et al. 
2020). This molecule is involved in leukostasis and modula-
tion of BRB permeability through its effects on PKCζ/NF-
κB, especially in late BRB breakdown (Aveleira et al. 2010; 
Huang et al. 2011).

IL-1β is an important mediator of innate immunity, 
whose synthesis is closely related to the activation of NLRP3 
(NOD [nucleotide oligomerization domain]-, LRR [leucine-
rich repeat]-, and PYD [pyrin domain]-containing protein 
3) inflammasome (Grebe et al. 2018). It can be produced 
by glial cells, Müller cells, and astrocytes (Gui et al. 2020). 
NLRP3 inflammasome and IL-1β are considered mediators 
of pyroptosis, inflammation and angiogenesis in retinal age 
related diseases (Wooff et al. 2019).

Elevated levels of pro-inflammatory cytokines, includ-
ing TNF-α, VEGF, and IL-1β, have been found in the blood 
and aqueous humour of diabetics who developed retinopathy 
(Wang et al. 2014; Das 2017; Feng et al. 2018; Yao et al. 2018; 
Wooff et al. 2019). The concentration of TNF-α in the circu-
lation was found to correlate with the severity of DR (Nalini. 
et al. 2017). Additionally, high levels of VEGF in the aqueous 
humor are considered a marker of proliferative DR and may 
have prognostic significance (Wang et al. 2014).

Molecular mechanisms of BRB breakdown and in-
creased permeability

Diabetes leads to the disintegration of the retinal neu-
rovascular unit, BRB dysfunction, and increased vascular 
permeability (Fig. 1). Increased permeability of BRB may 
arise from tight junction disruptions, up-regulation of vesic-
ular transport, or by degenerative changes to neurovascular-
unit-forming cells including pericytes and glia (Klaassen et 
al. 2013). 

Tight junctions or zonula occludens control the para-
cellular permeability of BRB. Junctional complexes contain 
occludin, claudins, and zonula occludens proteins 1, 2, and 3 
(ZO-1, -2, and -3). Alterations in junctional protein content 
or phosphorylation might result in BRB dysfunction and 
increased permeability (Klaassen et al. 2013). Additionally, 
high molecular weight molecules and fluids are transported 
via a transcellular route across the BRB in pinocytotic ves-
icles or caveolae. Trans-cellular permeability might also be 
affected by pro-inflammatory cytokine levels.

TNF-α decreases the expression and synthesis of tight 
junction proteins ZO-1 and claudin-5, and alters the cel-
lular localization of these proteins acting through the PKCζ/
NF-kB signalling pathway (Aveleira et al. 2010; Lin et al. 
2018). Alone, or in combination with IL-1β and VEGF, 

both criteria. We considered 36 (19+17) eligible to include 
in the discussion. Additional searches retrieved 22 records 
that were also included in the discussion.

DISCUSSION

Mediators of BRB dysfunction and increased permeabil-
ity in diabetes mellitus

BRB breakdown is a complex process mediated by mul-
tiple interactions among factors operating through different 
receptors and signalling pathways. Still, hyperglycemia, hy-
poxia, oxidative stress, and inflammation are considered to 
be crucial underlying processes involved in BRB dysfunction.

Several metabolic pathways have been implicated in hy-
perglycemia-related cellular damage, including the formation 
of stable advanced glycation end products (AGEs), activation 
of protein kinase C (PKC), and the polyol pathway (Klaassen 
et al. 2013; Gui et al. 2020). The unifying mechanism behind 
these hyperglycemia-induced metabolic changes appears to 
be increased production of reactive oxygen species (ROS) 
in mitochondria that result in oxidative stress (Brownlee 
2005). ROS can cause damage to macromolecules and cel-
lular structures and promote inflammation in the diabetic 
retina (Kowluru and Chan 2007; Gui et al. 2020).

Changes in the circulating and local concentrations of 
pro-inflammatory mediators are a hallmark of inflamma-
tion. Their increased levels are related to the changes in the 
expression of pro-inflammatory transcription factors such 
as nuclear factor kappa B (NF-κB) (Tang and Kern 2011; 
Tarr et al. 2013). The increased adhesion of leukocytes to 
endothelial cells in the retina appears to correlate with an in-
crease in vascular permeability. Leukocytes adhere to blood 
vessel walls after binding to vascular (VCAM-1) or inter-
cellular adhesion molecules 1 (ICAM-1) on the surface of 
endothelial cells (Tarr et al. 2013). In addition to the physi-
cal occlusion of capillaries, leukocytes release cytokines and 
growth factors, and generate ROS that all contribute to capil-
lary degeneration and BRB dysfunction (Tarr et al. 2013). A 
number of molecules have been identified as playing a role 
in BRB breakdown (Fig.1), however vascular endothelial 
growth factor (VEGF), tumour necrosis factor-α (TNF-α) 
and interleukin-1β (IL-1β), are considered to be among the 
most potent inducers of BRB breakdown (Gui et al. 2020).

VEGF is a key regulator of vascular permeability and 
angiogenesis in the retina (Gupta et al. 2013; Gui et al. 2020). 
It can be synthesized and released by Müller cells, retinal 
pigmented epithelium, retinal ganglion cells, pericytes, and 
endothelial cells in response to hypoxia, hyperglycemia, or 
oxidative stress (Sone et al. 1996; Tarr et al. 2013; Marazita et 
al. 2016).  In addition, matrix metalloproteinase 9 (MMP-9) 
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TNF-α induces permeability of the BRB in vitro by a mecha-
nism mediated by cAMP (van der Wijk et al. 2017). Addi-
tionally, TNF-α stimulates leukocyte adhesion by inducing 
ICAM-1 expression (Lee et al. 2015).

VEGF is considered to be the main factor responsible 
for neovascularization and the increased permeability of 
BRB (Gupta et al. 2013; Tarr et al. 2013; El Rami et al. 2017). 
VEGF-induced breakdown of the BRB is mediated through 
PKC β activation (Murakami et al., 2012). VEGF-mediated 
occludin phosphorylation is followed by ubiquitination of 
tight junction proteins and a subsequent increase in vascular 
permeability (Murakami et al. 2009). Additionally, VEGF 
regulates the expression of plasmalemma vesicle-associated 
protein (PLVAP), which is involved in trans-endothelial 
transport in BRB only in pathological conditions. (Hofman 
et al. 2001; Klaassen et al. 2009; Wisniewska-Kruk et al. 2014; 
Bosma et al. 2018).

NLRP3 inflammasome activation and consequent se-
cretion of IL-1β plays a major role in DR pathogenesis, es-
pecially in inflammation-mediated cell death that leads to 
the hallmarks of neurovascular unit degeneration, pericyte 
dropout and the formation of acellular capillaries (Wooff 
et al. 2019). 

Therapeutic potential of melatonin in the treatment of 
diabetic retinopathy

Melatonin is a neurohormone and an antioxidant that 
is synthesized mainly in the pineal gland and retina in the 
absence of light. This hormone synchronizes many physi-
ological functions, including metabolism, adapting them to 
circadian rhythms. Melatonin synthesis in the retina appears 
to be reduced in diabetic rats, which is probably caused by a 
reduction in arylalkylamine N-acetyl transferase (AANAT) 
activity (do Carmo Buonfiglio et al. 2011). Plasma melatonin 
concentration is found to be decreased in patients with DR 
(Wan et al. 2021).

This small molecule is both lipophilic and hydrophilic, 
so it crosses biological barriers easily (Pourhanifeh et al. 
2020). It accumulates within the mitochondria, where it ex-
erts potent antioxidant activity and increases the stability of 
the respiratory chain (Reiter et al. 2016). In addition, mela-
tonin metabolites generated via reaction with ROS act as 
antioxidants as well, thus forming a melatonin anti-oxidative 
cascade (Tan et al. 2014). In addition, melatonin stimulates 
antioxidant defences through a NRF2/ARE mediated mecha-
nism (Wang et al. 2012; Vriend and Reiter 2015; Ahmadi 
and Ashrafizadeh 2020). The anti-inflammatory effects of 
melatonin (Fig. 2A) are mediated through silent information 

Fig. 2. The mechanism of melatonin action in diabetic retinopathy: the MEG3/Sirt1/NF-κB (A) and the p38 MAPK/TXNIP/NF-κB (B) 
pathway. Legend: ROS, reactive oxygen species; MEG3, lncRNA, maternally expressed gene 3; miRNA-204, microRNA-204; NLRP3,  
NOD-, LRR- and pyrin domain-containing protein 3; Sirt1, silent mating type information regulation 2 homolog 1; NF-κB, nuclear factor-
κB; HIF-1, hypoxia-inducible factor; VEGF vascular endothelial growth factor; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; P38 
MAPK, p38 mitogen-activated protein kinase; TXN, thioredoxin; TXNIP, thioredoxin interacting protein. This figure was drawn using the 
vector image bank of Servier Medical Art (http://smart.servier.com/). Servier Medical Art by Servier is licensed under a Creative Commons 
Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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regulator T1 (Sirt1), NF-κB pathway, and NLRP3 inflamma-
some activity modulation (Favero et al. 2017; Che et al. 2020; 
Tu et al. 2020; Tang et al. 2021). The effect of melatonin on 
Sirt1 is mediated through the long non-coding RNA mater-
nally expressed gene 3 (MEG3)/micro RNA-204 (miR-204) 
axis (Tu et al. 2020).

Melatonin administration to diabetic animals leads to a 
reduction in the concentration of oxidative damage biomark-
ers and pro-inflammatory cytokines in the retina (Salido et 
al. 2013; Özdemir et al. 2014; Jiang et al. 2016; Mehrzadi et 
al. 2018; Djordjevic et al. 2018; Ferreira de Melo et al. 2020). 
In addition, melatonin maintains the integrity of the inner 
BRB by upregulating the expression of tight junction pro-
teins via inhibiting p38 mitogen-activated protein kinase 
(p38 MAPK)/thioredoxin interacting protein (TXNIP)/
NF-κB pathway (Fig. 2B) and decreasing the production of 
pro-inflammatory factors such as VEGF, TNF-α and IL-1β 
in an animal model of diabetic retinopathy, as well as in cell 
culture (Tang et al. 2021). The effects of melatonin on VEGF 
concentrations is probably mediated by the inhibitory ef-
fect of melatonin on HIF1 synthesis in the retina (Xu et al. 
2018), mediated by a Sirt1 dependent mechanism (Tu et al. 
2020). Additionally, melatonin inhibited neuronal pyroptosis 
by decreasing levels of NLRP3 and IL-1β both in vivo and in 
vitro (Che et al. 2020). 

CONCLUSION

Exploring efficient treatments for diabetic complica-
tions is an important topic, due to the rapid increase in 
diabetes cases worldwide. To date, intravitreal corticoste-
roids and anti-VEGF injections, as well as photocoagula-
tion, have been used for the treatment of diabetic retinopathy. 
Preclinical studies have shown that melatonin modulates 
several signalling pathways and demonstrated its therapeu-
tic or protective effects in the therapy of age-related ocular 
diseases, such as DR. To date, data suggest that melatonin 
may protect ocular tissues by decreasing the production of 
ROS and pro-inflammatory mediators, such as VEGF, TNF-
α, and IL-1β. Based on currently available data, melatonin 
may be considered for clinical trials as a treatment for ocular 
diseases characterized by BRB, although, the topic remains 
under investigation.
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