Biologia Serhica, 2025, 47: 00-00 DOI: 10.5281/zenodo.17463174

Review paper

Metabolic features of *Carnobacterium* spp. relevant to food spoilage

Jelena CVETANOVIC, Petar KNEZEVIC*

University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, 21 000 Novi Sad, Serbia

Accepted: 11 September 2025

Summary. Members of the genus *Carnobacterium* are psychrotolerant, facultatively anaerobic lactic acid bacteria frequently isolated from refrigerated and vacuum-packed food products of animal origin. This review explores their metabolic and physiological traits that contribute to food spoilage, with a particular focus on *C. maltaromaticum* and *C. divergens*. These species are metabolically versatile, capable of fermenting various carbohydrates and producing volatile organic compounds (VOCs) such as alcohols, ketones, aldehydes, and biogenic amines, which are strongly associated with undesirable sensory changes in meat, seafood, and dairy products. Their resilience under stress conditions, including cold temperatures, elevated pH, and modified atmosphere packaging, supports their persistence in food matrices. Proteolytic and lipolytic activities further enhance their spoilage potential by degrading proteins and fats, leading to off-odor and textural deterioration. A comprehensive understanding of the metabolic pathways and spoilage mechanisms of *Carnobacterium* spp. is essential for developing effective food preservation strategies and improving shelf-life management of perishable products.

Keywords: biogenic amines, modified atmosphere packaging (MAP), psychrotolerant bacteria, refrigerated storage, vacuum-packaged foods, volatile organic compounds (VOCs).

INTRODUCTION

Carnobacterium spp. are Gram-positive, non-spore-forming, facultatively anaerobic rods, commonly found in refrigerated and vacuum-packed (VP) animal-based food products (Hammes and Hertel 2009). Genus Carnobacterium belongs to the lactic acid bacteria (LAB) group that consists of over 60 genera, and those most frequently associated with food fermentation besides Carnobacterium include Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Streptococcus, Enterococcus, and Weissella (Mokoena 2017). Although typically catalase- and oxidase-negative, some strains can exhibit catalase activity in the presence of heme (Ringø et al. 2002). They exhibit fermentative metabolism, are facultatively heterofermentative, and can metabolize a broad range

of carbohydrates such as glucose, fructose, mannose, ribose, and sucrose, with variability among species (Kim et al. 2009). Many strains produce acids from sugars like ribose, trehalose, and galactose, and hydrolyze substrates such as arginine and esculin, contributing to their metabolic versatility (Hammes and Hertel 2009). During fermentation, they predominantly produce L(+)-lactate, while C. pleistocenium also generates ethanol, acetic acid, and CO₂. These bacteria are psychrotolerant, able to grow at or below 0 °C, and are also halotolerant (up to 8% NaCl) and alkaliphilic, tolerating pH levels up to 9.5 (Cailliez-Grimal et al. 2014; Pikuta and Hoover 2014). Such environmental adaptability makes them particularly relevant in the spoilage of foods stored under refrigeration and VP. *C. divergens* and *C. maltaromaticum* are especially associated with meat and fish spoilage, due to their ability to grow under

anaerobic, low-temperature, and mildly acidic-to-neutral pH conditions (5.4–6.1). Under these storage conditions, they become dominant members of the microbiota and contribute significantly to sensory degradation.

Comparative genomics revealed a high genetic diversity within the genus *Carnobacterium*, with genome sizes ranging from 2.4 to 3.6 Mb. The presence of genes involved in bacteriocin production, adaptation to cold environments, and utilization of diverse carbohydrates underlines the ecological versatility of these species. Importantly, several *Carnobacterium* genomes harbor genes encoding a V-type ATPase, which is believed to contribute to survival under cold and alkaline conditions, further supporting their dual role as potential bioprotective cultures in food and opportunistic pathogens in fish (Roh and Kim 2021).

Although typically associated with food, some strains have been reported to cause mixed infections in stressed fish and have also been isolated from human clinical samples, including pus and blood (Collins et al. 1987; Chmelař et al. 2002).

Their metabolic activity is linked to the production of volatile organic compounds (VOCs) such as 2-methylpropanal, 3-methylpropanal, 2-methylpropanol, and 3-methylpropanol, which impart a malty or spoiled aroma (Miller et al. 1974). Additionally, *Carnobacterium* spp. show a strong correlation with TVB-N (total volatile basic nitrogen) and TBARS (thiobarbituric acid-reactive substances), and a negative correlation with sensory indices like appearance, texture, and odor, further highlighting their role in food spoilage. Some species also show chitinolytic activity and the ability to utilize inulin, starch, and glycogen, supporting their adaptation and persistence in food matrices (Leisner et al. 2007; Hammes and Hertel 2009).

The aim of this review is to summarize and critically discuss the key metabolic characteristics of *Carnobacterium* species that contribute to their role in the spoilage of refrigerated and VP food products, with a focus on their fermentative pathways, production of volatile organic compounds (VOCs) (Table 1), proteolytic and lipolytic activities, and environmental adaptability.

CARNOBACTERIUM AND FOOD SAFETY

Carnobacterium species have been widely detected in a variety of processed meat and seafood products, raising concerns about their role in food spoilage and contamination. These lactic acid bacteria (LAB) are frequently associated with spoilage of cooked and cured meats, particularly terminal spoilage, and their ability to grow at refrigeration temperatures significantly impacts food safety (Samelis et al. 2006; Chenoll et al. 2007). Despite the use of food additives like ascorbic, lactic, acetic, citric, sorbic, and benzoic acids, as well as NaNO₂ and smoke-derived phenols, Carnobacterium species continue to

thrive in these environments (Jørgensen et al. 2000; Dalgaard et al. 2003; Lakshmanan and Dalgaard 2004).

Carnobacterium spp. presence in meat products

Carnobacterium spp. have been widely detected in processed meats, including bacon (Shaw and Harding 1984), ham (Borch and Molin 1988; Jack et al. 1996), cooked poultry (Barakat et al. 2000), pressure-treated chicken (O'Brien and Marshall 1996), processed pork and chicken (Grant and Patterson 1991). Notably, C. maltaromaticum has also been detected in fermented sausages (Schillinger and Lücke 1987; Larrouture-Thiveyrat and Montel 2003), which contrasts with the typical nonaciduric environments associated with carnobacteria (Hammes and Hertel 2006). Carnobacterium maltaromaticum and C. divergens are frequently isolated from meat products stored between -1.5 °C and 2 °C, dominating microbial populations in beef, pork, lamb, and poultry. These species may comprise up to 50% of Gram-positive or LAB isolates (McMullen and Stiles 1993; Sakala et al. 2002; Jones 2004). Their prevalence is consistent across VP, aerobically stored, and modified-atmosphere packaged (MAP) meats with CO₂/N₂ ratios ranging from 10:90 to 80:20 (Shaw and Harding 1984; Grant and Patterson 1991; McMullen and Stiles 1993; Barakat et al. 2000; Sakala et al. 2002; Susiluoto et al. 2003; Jones 2004; Björkroth 2005; Laursen et al. 2005; Vihavainen et al. 2007). Other species, including C. gallinarium (Thornley 1957; Collins et al. 1987), C. mobile (Chenoll et al. 2007), and C. viridans (Holley et al. 2002), have also been isolated from a variety of meat products.

Psychrotrophic bacteria like Carnobacterium spp. can thrive at chilled temperatures, especially during carcass cutting. The primary source of contamination appears to be meat processing environments, rather than the slaughtered animals themselves. Unlike many other spoilage bacteria, Carnobacterium spp. have not been isolated from the gastrointestinal tract or skin of livestock such as chicken, cattle, pigs, or sheep, suggesting that processing environments are the primary source of contamination. Findings in the literature vary regarding the effectiveness of processing in eliminating Carnobacterium spp. For example, C. divergens and C. maltaromaticum detected on broiler carcasses were linked to airborne contamination within processing plants rather than the incoming poultry (Vihavainen et al. 2007). In contrast, other studies have reported that appropriate processing procedures can markedly reduce or even eliminate these species from raw materials (Samelis et al. 1998), indicating that the outcome depends strongly on the specific processing conditions and hygiene practices employed. Molecular techniques such as 16S rRNA gene sequencing have deepened our understanding of Carnobacterium presence along the pork and poultry production chains (Poirier et al. 2020). Identical ERIC-PCR profiles of *Carnobacterium* detected in environmental samples, sheep pelts, and lamb carcasses suggest potential cross-contamination routes during processing (Mills et al. 2014). Partial 16S rRNA gene sequencing has revealed the complexity of raw beef microbiota, with *Carnobacterium* present alongside *Acinetobacter*, *Bacillus*, *Janthinobacterium*, *Lactobacillus*, *Pseudomonas*, *Psychrobacter*, and *Stenotrophomonas* (Aquilanti et al. 2016; Callahan et al. 2017; Choi et al. 2020; Yang et al. 2020). Studies on cooked ham have shown that species such as *B. thermosphacta*, *C. divergens*, *C. maltaromaticum*, *L. carnosum*, *L. gelidum*, *L. mesenteroides*, and *S. proteamaculans* persist at the end of processing, with *Brochothrix*, *Carnobacterium*, *Lactobacillus*, *Leuconostoc*, *Vibrio*, and *Weissella* dominating at the end of shelf life (Van Reckem et al. 2020).

Presence in dairy products

Raw milk contains a diverse microbial community that includes both beneficial bacteria with technological applications, such as lactic acid bacteria, and harmful spoilage organisms (Ercolini et al. 2009). The nutrient-rich composition and near-neutral pH of raw milk create ideal conditions for microbial proliferation. Contamination can occur through multiple pathways, including farm environments, animal feed, bedding materials, udder surfaces, and milking equipment (Von Neubeck et al. 2015; Islam et al. 2018). Initially, milk collected aseptically from heifer udders contains no bacteria, but this changes as milking frequency increases. The bacterial composition on teat skin reflects the surrounding farm environment and can be influenced by bedding materials, which are affected by feeding and housing practices. Feed sources vary in their microbial content depending on pasture conditions, supporting the growth of bacteria, yeasts, and molds. Additionally, stable dust and inadequate milking hygiene contribute to microbial contamination of teat surfaces (Frétin et al. 2018). The level of bacterial contamination in raw cow milk is determined by several interconnected factors: animal health and cleanliness, stable sanitation, premilking udder preparation procedures, milking techniques, proper cleaning and disinfection of milking equipment and storage tanks, appropriate milk cooling and storage practices, and personnel hygiene standards (Cempírková 2007). Dairy products, particularly cheese, represent significant reservoirs of carnobacteria. Lactobacillus maltaromicus, later reclassified as Carnobacterium maltaromaticum, was initially described by Miller et al. (1974) following its isolation from milk samples characterized by a distinct malty aroma. Among 30 French soft-ripened and red-smear cheeses made from cow, ewe, or goat milk, either raw or pasteurized, C. maltaromaticum was found in 10 samples, with isolates from three of them showing anti-Listeria activity (Cailliez-Grimal et al. 2007). In these cheeses, *C. maltaromaticum* was the predominant psychrotrophic lactic acid bacterium. It was capable of growing even under alkaline pH conditions, reaching high concentrations (10⁸ to 10⁹ CFU/g) during subsequent cold storage at 4 °C (Cailliez-Grimal et al. 2007). This species may also act as a potential ripening microorganism in soft cheeses (Edima 2007).

Presence in seafood

Carnobacterium spp. are also emerging as important seafood spoilage bacteria (Jaffrès et al. 2009; Noseda et al. 2012). They have been shown to dominate the microbiota of peeled brown shrimp stored at 4 °C by day 7 (Calliauw et al. 2016) and rapidly spoil cooked tropical shrimp (Macé et al. 2014). Carnobacterium maltaromaticum represents a significant spoilage microorganism in seafood products, particularly shrimp, with its spoilage potential being highly dependent on storage conditions and packaging methods. Carnobacterium maltoaromaticum demonstrates the ability to produce off-odor compounds in shrimp (Dabadé et al. 2015) and generates volatile compounds such as ammonia and other TVB-N compounds that contribute to spoilage in both cooked cold-water shrimp (Pandalus borealis) and tropical shrimp species (Laursen et al. 2005; Jaffrès et al. 2011; Macé et al. 2014). The spoilage activity of C. maltaromaticum exhibits temperature-dependent characteristics, with studies showing that while Pseudomonas psychrophila produces significantly higher amounts of TVB-N and demonstrates faster growth rates at temperatures ranging from 0 to 15 °C, C. maltaromaticum exhibits superior growth rates at elevated temperatures such as 28 °C. The competitive advantage of C. maltaromaticum becomes particularly pronounced under oxygen-limited conditions due to its high resistance to CO and anaerobic environments (Alfaro and Hernandez 2013), allowing it to outcompete aerobic spoilage bacteria in MAP or VP systems. However, in air-stored products, its spoilage impact is diminished in the presence of more active aerobic spoilers such as Pseudomonas sp. This packaging-dependent spoilage behavior has been demonstrated in comparative studies, where C. maltaromaticum showed reduced spoilage activity compared to Pseudomonas fragi in air-stored meat products (Ercolini et al. 2010; Casaburi et al. 2011), while emerging as the dominant spoiler in modified atmosphere packaged cooked tropical shrimp compared to other bacterial species (Macé et al. 2014). Both Laursen et al. (2005) and Noseda et al. (2012) concluded that right before the expiration date of MAP seafood, the predominant microorganisms isolated were Gram-positive bacteria, specifically C. maltaromaticum, C. divergens, and B. thermosphacta. A multiplex real-time quantitative PCR (qPCR) method was developed and validated for the specific detection and quantification of *C. maltaromaticum* and *C. divergens* in cold-smoked salmon. This assay enables rapid and accurate monitoring of these species in seafood products, offering an efficient alternative to conventional culture-dependent techniques (Le Rhun et al. 2021).

Presence in other foods

In a study investigating bacterial eggshell penetration and whole egg contamination, Carnobacterium sp. was among seven bacterial strains tested for their ability to invade and persist within eggs. Using both an agar-filled egg model and intact eggs, Carnobacterium was shown to penetrate eggshells and survive within whole eggs, achieving a 17.5% contamination rate, second only to Salmonella enteritidis (De Reu et al. 2006). Carnobacterium divergens MB421, isolated from fermented green olives, exhibited strong probiotic characteristics, including tolerance to bile salts (up to 1%), gastric juice (pH 2.2), and salt concentrations up to 7%. It showed antimicrobial activity against several pathogenic bacteria and was capable of fermenting various carbohydrates and producing significant amounts of organic acids. These properties suggest its potential use as a starter culture in fermented foods and as a viable probiotic candidate (Saeed et al. 2023). In the study investigating LAB in flour-based fermentations, Carnobacterium spp. was identified among the isolates from wheat flour dough. These findings demonstrate that wheat flour supports a more diverse LAB community, including Carnobacterium, which may contribute to the fermentation process and affect the dough's biochemical properties, such as acidification and antimicrobial activity (Kleib et al. 2023).

ROLE OF *CARNOBACTERIUM* SPP. IN FOOD SPOILAGE

Meat spoilage is a complex and multifaceted process driven by a combination of chemical and biological factors, resulting in the deterioration of meat to a state unfit for human consumption (Gram et al. 2002). The nutrient-rich composition of meat, its favorable pH (5.5-6.5), and high moisture content create an ideal environment for microbial growth. Spoilage is not solely the result of lipid oxidation or enzymatic reactions but is heavily influenced by microbial activity (Nychas et al. 2007, 2008; Doulgeraki et al. 2012). Key contributors to spoilage include microbial species selected under specific environmental and storage conditions. Factors such as the animal's physiological state at slaughter, processing, transportation, preservation, and storage conditions significantly influence the microbial quality of raw meat (Nychas et al. 2008). Packaging and temperature are particularly critical, refrigeration favors psychrotrophic microorganisms, and the presence or absence of oxygen influences microbial dynamics and spoilage potential (Nychas et al. 2007, 2008; Doulgeraki et al. 2012). A limited number of microbial species are primarily responsible for spoilage. These include both Gram-positive and Gram-negative bacteria, which, through aerobic or anaerobic metabolism, produce spoilage compounds such as esters, ketones, aldehydes, sulfur compounds, amines, and volatile fatty acids (Dainty et al. 1985; Lambert et al. 1991; Kakouri and Nychas 1994).

Among the dominant spoilage organisms are LAB, notably Carnobacterium spp., which frequently prevail in VP and MAP meat and seafood (Leisner et al. 2007). LAB, including Carnobacterium, are often involved in the terminal spoilage of cooked and cured meats (Samelis et al. 2006; Chenoll et al. 2007). These bacteria are psychrotrophic, capable of surviving and proliferating at low temperatures, and have been implicated in the spoilage of refrigerated chicken under aerobic conditions (Liang et al. 2012), raw salmon in MAP (Macé et al. 2013), and cooked shrimp, producing off-odors such as cheese/feet, or fermented smells (Jaffrès et al. 2011). In MAP poultry products, spoilage is largely attributed to Gram-positive bacteria like B. thermosphacta and LAB, including Carnobacterium, Lactococcus, Lactobacillus, and Leuconostoc (Barakat et al. 2000; Koort et al. 2005; Säde et al. 2013). Environmental and packaging factors significantly affect microbial selection: for instance, C. divergens is suppressed in MAP with high O₂ (20-40%) and 40% CO₂, while it thrives under aerobic storage (Ercolini et al. 2011). The growth of *C. funditum* is similarly inhibited by oxygen (Franzmann et al. 1991). Seasonal factors further influence the prevalence of Carnobacterium. In warm climates, mesophilic LAB such as Carnobacterium spp., L. sakei, L. curvatus, and Weissella spp. are more frequently associated with spoilage (Ercolini et al. 2009, 2011; Doulgeraki et al. 2010, 2012). Carnobacterium was found to dominate beef samples collected in July (Hwang et al. 2020).

Brochothrix thermosphacta and Carnobacterium spp. exhibit moderate tuna fish spoilage potential, characterized by the production of butter/caramel-like odors (Silbande et al. 2018). Some C. maltaromaticum strains have been implicated in spoilage phenomena, such as textural degradation of salmon fillets (Morzel et al. 1997). The expression of spoilage traits is further influenced by environmental factors. For instance, essential oils have exhibited antimicrobial effects against several spoilage-associated species, including L. sakei, L. curvatus, C. maltaromaticum, B. thermosphacta, P. fluorescens, and Serratia liquefaciens (Ouattara et al. 1997). Notably, oregano essential oil has been shown to modulate glucose metabolism pathways in lactic acid bacteria, thereby altering the production of spoilage-related metabolites (Nychas et al. 1998; Skandamis and Nychas 2001).

Among dairy products, surface mold-ripened soft cheeses made from unpasteurized milk, such as Brie, have

been shown to support substantial microbial growth. The relatively high surface pH of Brie cheese (pH 6.8-7.6) facilitates the proliferation of these bacteria, with populations reaching concentrations of 108 to 109 CFU/g. Furthermore, C. divergens and C. maltaromaticum are prominent members of the LAB community present in the curd of mozzarella cheese produced using unpasteurized milk (Morea et al. 1999). Lipolytic or proteolytic activity is observed at low temperatures in several genera present in minor abundance, including Arthrobacter spp. and Carnobacterium spp. In a study by Vithanage et al. (2014) examining the extracellular protease activity of psychrotrophic bacterial populations in raw milk, approximately half of the bacterial isolates demonstrated proteolytic capabilities. Isolates of Carnobacterium consistently produced biofilms at 10 °C or 4 °C making them the most prevalent bacteria among high total bacterial count raw milk samples and this confirms elevated bacterial counts can result from biofilms and poor hygiene in the milk processing environment (Hahne et al. 2019).

Carnobacterium spp. are widely studied for their potential as bioprotective cultures, valued for their ability to enhance shelf life without negatively impacting sensory qualities. Among them, C. maltaromaticum strains KOPRI 25789 and MMF-32 have demonstrated notable antimicrobial activity, primarily through bacteriocin production, effectively inhibiting Listeria monocytogenes and various Gramnegative bacteria in cold-smoked salmon (Darbandi et al. 2021). However, antimicrobial efficacy is not solely dependent on bacteriocin synthesis, as both bacteriocin-producing and non-producing strains have shown inhibitory capabilities (Nilsson et al. 1999). Bacteria of this genus exhibit three key bioprotective mechanisms: competition, exclusion, and displacement. Their ability to produce antimicrobial substances, secrete enzymes, and express adhesion proteins on the cell surface enables carnobacteria to inhibit pathogenic and opportunistic bacteria. Genomic features are central to this activity, as an extensive secretome and proteome equip carnobacteria to quickly colonize niches and outcompete other microorganisms (Leisner et al. 2007).

Carnobacterium species exhibit antimicrobial properties against various foodborne pathogens and spoilage microorganisms, including Listeria (Danielski et al. 2022), Salmonella (Hu et al. 2019), Serratia spp., Pseudomonas spp. (Zhang et al. 2019), Campylobacter spp. (Smialek et al. 2018), Pseudomonas fluorescens, Brochothrix thermosphacta (Cavalari et al. 2019), and Enterobacteriaceae (Imazaki et al. 2014) across seafood, meat, and dairy applications. These characteristics demonstrate Carnobacterium's capacity to enhance food safety measures (Koutsoumanis et al. 2021). Additionally, Carnobacterium shows promise for use in plant-based food systems (Agriopoulou et al. 2020), and plant-based food items (Geer-

aerts et al. 2020). Research conducted by González-Gragera et al. (2024) highlights the significant promise of integrating piscicolin CM22, a newly identified bacteriocin produced by a cold-tolerant *C. maltaromaticum* strain, into edible coatings (ECs) made from chitosan and fish gelatin to improve the quality and safety of fish products. The results show that these ECs notably enhanced microbiological properties and prolonged the storage life of fresh fish maintained at both 4 °C and 8 °C temperatures. Furthermore, chitosan-derived ECs provided pH stabilization and improved color preservation, thus maintaining the sensory and functional characteristics of the fish products.

METABOLIC PROCESSES AND PRODUCTS OF *CARNOBACTERIUM* SPP. DURING MEAT SPOILAGE

Metabolic processes

In contrast to the extensive metabolic knowledge accumulated for lactococci and lactobacilli in recent years, metabolism of Carnobacterium spp. remains relatively understudied. These bacteria demonstrate strong aerobic growth capabilities, with C. maltaromaticus showing a 10-fold increase in growth yield when heme is supplemented to aerobically cultured cells (Meisel et al. 1994). Under these conditions, functional cytochromes of both b and d types become detectable, similar to the cytochrome induction observed in lactococci and enterococci (Sijpesteijn 1970; Ritchey and Seely 1976). The presence of cydAB genes encoding cytochrome oxidase (bd) in Lactococcus lactis (Gaudu et al. 2002) suggests that when heme is accessible, C. maltaromaticum possesses respiratory metabolic potential and displays catalase activity. This catalase property is shared among all Carnobacterium species (Ringø et al. 2002), with the exception of C. pleistocenium, which has not been examined for this characteristic. Respiratory metabolism correlates with enhanced oxygen consumption, decreased lactate production, and elevated acetoin and CO₂ generation.

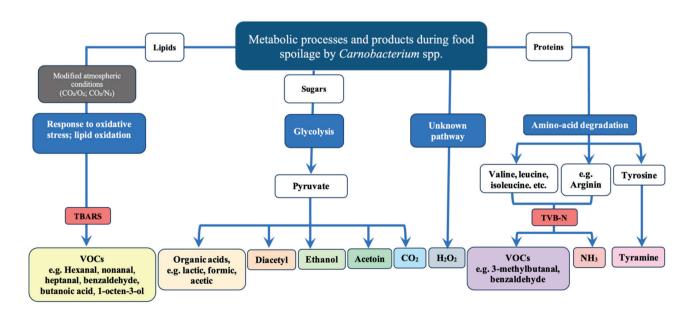
Understanding gene expression under different atmospheric conditions provides insight into microbial metabolic adaptations. Although no significant differential expression of genes related to general metabolic pathways was detected by metatranscriptomic analysis under MAP conditions, including $\rm CO_2/O_2$ and $\rm CO_2/N_2$ environments, specific stress responses were observed. For instance, genes encoding superoxide dismutase and organic hydrogen peroxide resistance proteins were upregulated under $\rm CO_2/O_2$ conditions, suggesting a cellular response to oxidative stress (Madamanchi and Runge 2007; Li et al. 2013). Despite the lack of significant transcriptomic changes, metabolic activity remained evident across both atmospheric environments. The most

abundantly expressed proteins belonged to enzymes involved in glycolysis, indicating a strong glycolytic flux. Previous research has shown that *C. divergens* is homofermentative, as it lacks phosphoketolase, an essential enzyme for heterolactic fermentation (Höll et al. 2020). Nevertheless, transcriptomic data indicate that pyruvate-derived metabolic byproducts such as ethanol (via ethanol dehydrogenase), acetate (via acetate kinase), formate (via formate acetyltransferase), and CO₂ (via pyruvate dehydrogenase) are produced under both CO₂/O₂ and CO₂/N₂ conditions. This suggests a metabolic flexibility, with the production of compounds typically associated with heterofermentative pathways even in the absence of phosphoketolase. Prior studies have indicated that growth conditions and pyruvate availability influence metabolite formation (Bartowsky and Henschke 2004), and aerobic conditions in particular have been shown to enhance these metabolic processes, notably in C. maltaromaticum (Casaburi et al. 2011). Carnobacteria exhibit facultatively heterofermentative carbohydrate metabolism, fermenting both hexoses and pentoses. Excluding C. pleistocenium, hexoses are converted to L(+)-lactate, while also producing CO₂, acetate, and ethanol. Furthermore, formate is produced under anaerobic conditions (Borch and Molin 1989) and acetoin under aerobic conditions. Pentose metabolism yields L(+)-lactate, acetate, and ethanol (Holzapfel and Gerber 1983). Glucose processing occurs through the glycolytic pathway (De Bruyn et al. 1987, 1988). In Group I species, approximately 75% of lactate production is derived from glucose, with less than 10% originating from formate and acetate, while the remaining products presumably stem from endogenous substrates in nutrient-rich media (Hammes and Hertel 2009). Group II species show distinct patterns, with C. pleistocenium producing ethanol, acetate, and CO₂ without lactate formation from carbohydrate fermentation. This metabolic profile excludes this species from the physiological definition of lactic acid bacteria, suggesting metabolism resembling the Embden-Meyerhof pathway in yeast. Similarly, C. funditum and C. alterfunditum do not generate lactate from glycerol, producing exclusively formate, ethanol, and acetate. Certain species or strains demonstrate polysaccharide hydrolysis and fermentation capabilities. Inulin utilization occurs in C. divergens, C. gallinarum, and specific C. maltaromaticum strains. Amylolytic activity is documented through starch utilization in C. pleistocenium and glycogen utilization in C. mobile and C. gallinarum. The presence of starch in plant materials and subsequently in fish intestinal tracts may reflect adaptation of Carnobacterium to that ecological niche (Hammes and Hertel 2009). C. maltaromaticum utilizes two distinct pathways for lactose and galactose metabolism: the Tagatose-6-phosphate (Tagatose-6P) pathway and the Leloir pathway. Some strains possess genes encoding one or both pathways, while

others lack these genes entirely. The Tagatose-6P pathway is typically encoded by the lac gene cluster (e.g., lacA-G), and is involved in the phosphoenolpyruvate phosphotransferase system (PTS)-mediated uptake and phosphorylation of lactose or galactose, followed by enzymatic degradation. The Leloir pathway, on the other hand, includes genes like *galK*, galT, galE, and galM, which sequentially convert galactose into glucose-6-phosphate (Iskandar et al. 2016). Genomic comparisons across multiple C. maltaromaticum strains showed that these metabolic genes are variably located on chromosomes and megaplasmids, and often exhibit signs of horizontal gene transfer, duplication, and genomic rearrangement. In particular, the C. maltoaromaticum exhibits the highest intraspecific heterogeneity among the LAB analyzed, a finding that correlates with its previously reported high genetic diversity (Rahman et al. 2014). These findings suggest that the evolutionary adaptation of lactose metabolism in C. maltaromaticum has been shaped by environmental pressures, particularly in dairy environments, where lactose is a primary carbon source (Iskandar et al. 2016).

These bacteria also possess the ability to degrade proteins. Genomic analysis has revealed that C. maltaromaticum and C. divergens possess conserved oligopeptide transporter systems (OppABCDF, DtpT) and intracellular peptidases, enabling them to efficiently import and degrade peptides derived from food proteins (Dallagnol et al. 2021). Experimental studies on C. maltaromaticum strains growing in raw fish protein extracts showed significant degradation of soluble proteins (up to ~137 mg/100 mL) and accumulation of free amino acids, confirming their active proteolysis during spoilage. This enhances their capacity to generate free amino acids that can be further converted into spoilage metabolites. Carnobacteria exhibited moderate degradation of fish sarcoplasmic proteins (\leq 73%), leading to the release of small peptides and free amino acids, with alanine, glycine, asparagine, and arginine showing the greatest increases in concentration (Dallagnol et al. 2021). Recent genomic analyses have revealed that C. maltaromaticum and C. divergens possess homologs of PrtB, a cell envelope-associated protease (CEP) commonly associated with dairy lactic acid bacteria such as Lactobacillus delbrueckii subsp. bulgaricus (Iskandar et al. 2017). These proteases enable the extracellular degradation of proteins into peptides, which are subsequently internalized via oligopeptide transport systems (OppABCDF and DtpT) and hydrolyzed further by intracellular peptidases. This proteolytic system appears to be conserved in C. maltaromaticum and C. divergens, but not in all Carnobacterium strains, suggesting a selective advantage in protein-rich environments such as meat, fish, and dairy products. The ability to exploit environmental proteins for amino acid acquisition likely contributes to their success in

refrigerated foods and plays a critical role in spoilage through the release of volatile nitrogenous compounds, off-odors, and degradation of texture and sensory quality. Arginine hydrolysis provides an additional source of adenosine triphosphate (ATP), and most members of the genus Carnobacterium are capable of it, though it is absent in C. viridans and C. maltaromaticum (Laursen et al. 2005). In addition, genes associated with the arginine deaminase pathway are expressed. This pathway contributes to energy generation via substrate-level phosphorylation and plays a role in microenvironmental pH regulation, further supporting adaptation to varying environmental conditions (Höll et al. 2020). These findings emphasize the metabolic versatility of Carnobacterium spp., especially C. divergens, under MAP, and highlight how specific metabolic routes help sustain cellular function and adaptation under stress.


Carnobacteria also produce lipases, which are considered secondary spoilage factors. This activity has been observed on olive oil/Tween-80 agar at both 20 °C and 4 °C, indicating their ability to break down fats, generate flavor compounds, and contribute to rancidity (Casaburi et al. 2011). Also, it has been reported that they are able to hydrolyze tributyrin, indicating lipolytic activity (Papon and Talon 1988). *Carnobacterium divergens* and *C. maltaromaticum* did not inhibit the oxidation of linoleic acid during growth (Talon et al. 2000), suggesting that these species are unlikely to protect meat products from quality deterioration caused by lipid oxidation.

Carnobacterium spp. do not produce DNases or RNases and no nuclease activity has been associated with them

(Palevich et al. 2024). Some species, such as *C. viridans* and *C. divergens*, produce hydrogen peroxide, which reacts with myoglobin in VP cooked cured Bologna sausage, causing an undesirable green discoloration (Borch and Molin 1989; Holley et al. 2002; Peirson et al. 2003). Despite this, the specific enzymes responsible for hydrogen peroxide production remain unidentified (Remenant et al. 2015) (Fig. 1).

Metabolic products

Fresh raw meat is characterized by a distinctive sensory profile, including a bloody, metallic, and salty taste and an aroma similar to blood serum (Joo and Kim 2011). These attributes are largely driven by VOCs, which contribute significantly to meat aroma due to their high vapor pressures at room temperature (Carter 2010). VOCs encompass a broad range of chemical classes—fatty acids, hydrocarbons, aldehydes, ketones, alcohols, esters, benzenoids, terpenoids, and various nitrogen- and sulfur-containing compounds (Estévez et al. 2003; Rivas-Cañedo et al. 2009). In addition to being key contributors to aroma, some VOCs can serve as speciesspecific markers in meat (Rødbotten et al. 2004; Wood et al. 2004; Rota and Schieberle 2006). Sensory evaluations have further expanded the olfactory descriptors associated with raw meat (Ercolini et al. 2010; Casaburi et al. 2011; La Storia et al. 2012). Carnobacterium spp. are known contributors to VOC production during chilled storage under aerobic, VP, or MAP conditions. These bacteria synthesize alcohols via metabolic routes including amino acid catabolism, proteolysis, aldehyde reduction from lipid oxidation, and methyl ketone

Fig. 1. Metabolic processes and products during food spoilage by *Carnobacterium* spp. (TBARS – thiobarbituric acid-reactive substances; VOCs – volatile organic compounds: TVB-N – total volatile basic nitrogen).

Table 1. Volatile organic compounds produced by *Carnobacterium* spp.

Volatile organic compound (VOC)		Characteristic smell	Common Food Sources	References
Diacetyl (2,3-butanedione)	CH ₃ CH ₃	Buttery, popcorn-like, creamy	Butter, cheese, spoiled meat/fish	Joffraud et al. 2001
Acetoin (3-hydroxy-2-butanone)	H ₃ C CH ₃	Mildly buttery, creamy	Dairy, spoiled meat	Dainty et al. 1989
2,3-Pentanedione	H ₃ C CH ₃	Caramel-like	Smoked or cooked meat	Odeyemi et al. 2018
Butanoic acid	H ₃ C OH	Rancid butter, sweaty, sour milk	Spoiled dairy or meat	Jones 2004
1-Octen-3-ol	CH ₃ CH ₂	Mushroom-like, earthy	Meats, dairy, spoiled fish	Leisner et al. 1995
2-methylpropanal	H_3C H CH_3	Sharp, bitter, slightly fruity (aldehydic)	Beer (as an off-flavor), fermented dairy, aged cheese, oxidized fats	Miller et al. 1974
3-methylpropanal	CH ₃ O H ₃ C H	Sweet, nutty, fruity, slightly cheesy	Fermented foods, ripened cheese, cured meats, wine	Miller et al. 1974
2-methylpropanol	CH ₃ OH	Sharp, alcoholic, mildly fruity	Beer, wine, fermented fruits, sourdough	Miller et al. 1974
3-methylpropanol	H ₃ C OCH ₃ H ₃ C OH	Cheesy, fruity, alcoholic	Aged cheese, fermented soy, beer, sour milk	Miller et al. 1974
3-methylbutanal	CH ₃ O H ₃ C	Malty, nutty, cheesy, fruity	Aged cheese, fer- mented meats, beer, chocolate	Ramírez and Cava 2007
hexanal	H ₃ C H	Green, grassy, fatty, rancid in high concen- trations	Fresh meats, dairy, oxidized fats, veg- etables	Ramírez and Cava 2007

Volatile organic compound (VOC)		Characteristic smell	Common Food Sources	References
nonanal	CH ₃ O H	Floral, citrus-like, fatty	Cooked meats, dairy products, fruits, vegetable oils	Ramírez and Cava 2007
heptanal	H ₃ C H	Fatty, oily, green, citrus	Animal fats, dairy, roasted meat, nuts	Ramírez and Cava 2007
benzaldehyde	ОН	Almond-like, nutty, sweet	Almonds, cherries, apricot kernels, some dairy products	Muriel et al. 2004
2-pentanone	H ₃ C CH ₃	Sweet, fruity, solvent- like	Cooked meat, cheese, some fruits	Tan et al. 2020
2-heptanone	H ₃ C CH ₃	Fruity, banana-like, blue cheese	Blue cheese, ripened cheeses, cooked meats, some fruits	Tan et al. 2020
isopentyl alcohol	CH ₃ OH	Alcoholic, banana, fuel oil	Fermented beverages, cheeses, soy sauce, overripe fruits	Tan et al. 2020
ethyl propanoate	H ₃ C CH ₃	Fruity, pineapple, rum	Pineapple, strawberries, fermented dairy, baked goods	Tan et al. 2020
trimethylamine	CH ₃ I CH ₃ N CH ₃	Fishy, ammonia-like	Spoiled fish, seafood, some cheeses	Prabhakar et al. 2021
dimethylamine	CH ₃ /N CH ₃	Fishy, ammoniacal, unpleasant	Spoiled meats, fish, fermented protein- rich foods, aged cheeses, meat extracts	Prabhakar et al. 2021

reduction (García et al. 1991; Borch et al. 1996; Beck et al. 2004). For example, C. maltaromaticum produces 2,3-butanedione (diacetyl) and 2,3-pentanedione, which contribute buttery aromas to cold-smoked salmon (Joffraud et al. 2001; Odeyemi et al. 2018). The genus also generates aldehydes such as 3-methylbutanal, hexanal, nonanal, heptanal, and benzaldehyde, all of which are associated with spoilage due to their low odor thresholds (Muriel et al. 2004; Ramírez and Cava 2007). Afzal et al. (2012) described two biosynthetic routes for 3-methylbutanal production in C. maltaromaticum LMA 28: a direct route via α-ketoacid decarboxylase (KADC) and an indirect oxidative route via α-ketoacid dehydrogenase (KADH), both confirmed through enzymatic assays and genetic analysis. The partial reduction in 3-methylbutanal upon KADH inhibition indicates both pathways function in vivo, highlighting the strain's metabolic adaptability and its role in cheese aroma development. Ketones such as acetoin (3-hydroxy-2-butanone) are also significant metabolites produced by C. maltaromaticum, B. thermosphacta, and Lactobacillus spp. via glucose catabolism (Ardö 2006). Acetoin has a detection threshold of 800 mg/L (Belitz and Grosch 1982) and imparts creamy, dairy-like notes (Dainty et al. 1989). A study of 45 Carnobacterium strains revealed that 80% of strains produced acetoin under both air and vacuum conditions (Leisner et al. 1995). Among volatile fatty acids, butanoic acid, frequently detected in both airand VP meat, is strongly linked to spoilage, primarily due to the activity of Carnobacterium spp. and B. thermosphacta (Leisner et al. 1995; Jones 2004). Casaburi et al. (2011) observed that meat stored in air exhibited a more diverse VOC profile than vacuum-stored samples, illustrating how packaging affects microbial metabolism and spoilage dynamics. In addition to VOCs, C. divergens and C. maltaromaticum are notable for producing tyramine, a biogenic amine formed via tyrosine decarboxylation (Straub et al. 1995). Tyramine is not volatile but poses toxicological concerns, especially in individuals with monoamine oxidase (MAO) deficiencies, due to its potential to trigger hypertensive crises and migraines (McCabe 1986) (Fig. 2). Its formation is influenced by strainspecific traits, storage conditions, and precursor availability (Leisner et al. 1994; Bover-Cid and Holzapfel 1999; Masson et al. 1999; Laursen et al. 2005), with high levels observed in C. divergens under low-pH, glucose-rich conditions, effects that can be mitigated by NaCl (Masson et al. 1999).

Spoilage-related metabolites are also formed through enzymatic pathways such as transamination, decarboxylation, and reduction of branched-chain amino acids (valine, leucine, isoleucine), leading to low-threshold, malodorous compounds (Leisner et al. 2007). In seafood products like shrimp, *Carnobacterium* can degrade arginine to ammonia, contributing to unpleasant off-odors (Laursen et al. 2005).

Fig. 2. Tyramine structural formula.

Interestingly, while C. maltaromaticum is capable of producing a broad range of VOCs, sensory panels have not consistently reported negative effects on meat quality, suggesting that not all strains necessarily compromise sensory properties (Casaburi et al. 2011; Pothakos et al. 2015). Recent multi-omics studies have shed further light on Carnobacterium's role in spoilage. In VP beef, microbiome and metabolome analyses revealed a decline in overall bacterial diversity and a rise in LAB, including Carnobacterium, especially in samples with pH between 5.4 and 6.1 (Rodriguez-Caturla et al. 2025). This microbial shift correlated with elevated levels of spoilage-associated VOCs, including alcohols (e.g., 1-propanol, 2-methylpropanol) and ketones (e.g., 2-nonanone, 2-octanone, 2-heptanone). In high-pressure processed (HPP) baby clams treated at 400 MPa, Carnobacterium was one of the dominant genera associated with extended shelf life, reduced spoilage compounds (e.g., trimethylamine), and favorable sensory outcomes, unlike control samples dominated by Aeromonas, Shewanella, and Pseudomonas (Palamae et al. 2025). Nevertheless, the spoilage potential of Carnobacterium remains evident. In cold-stored sturgeon fillets, Carnobacterium abundance positively correlated with chemical spoilage markers such as TVB-N and TBARS, as well as VOCs like 2-pentanone, 2-heptanone, isopentyl alcohol, and ethyl propanoate, compounds associated with off-odors and quality deterioration (Prabhakar et al. 2021; Tan et al. 2022). These findings were supported by a decline in sensory attributes including appearance, texture, and odor, affirming the genus' significant contribution to quality degradation during refrigerated storage.

CONCLUSION

Carnobacterium spp., particularly *C. maltaromaticum* and *C. divergens*, play a significant role in the spoilage of refrigerated and VP food products due to their remarkable metabolic adaptability and environmental tolerance. These psychrotolerant LAB thrive under cold, anaerobic, and modified atmosphere conditions, where they contribute to quality degradation through the production of volatile organic compounds, biogenic amines, proteases, and lipases. Their metabolic activities result in the formation of off-odors, discoloration, textural changes, and elevated spoilage markers such as TVB-N and TBARS in meat, seafood, and dairy products.

Although some strains exhibit antimicrobial properties and are explored for biopreservative use, their spoilage potential underlines the importance of strain-level characterization and targeted control strategies. Their dual role is shaped by strain-specific traits and environmental conditions, including packaging, temperature, and nutrient availability. Further investigation into their genomics, metabolic pathways, and interactions with other microbiota is essential for improving food safety and extending shelf life in chilled and packaged foods.

ACKNOWLEDGEMENTS

"The authors gratefully acknowledge the financial support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grants No. 451-03-137/2025-03/ 200125 & 451-03-136/2025-03/ 200125).

LITERATURE CITED

- Afzal MI, Delaunay S, Paris C, Borges F, Revol-Junelles AM, Cailliez-Grimal C. 2012. Identification of metabolic pathways involved in the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism by Carnobacterium maltaromaticum LMA 28. International Journal of Food Microbiology. 157(3):332–339.
- Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. 2020. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms. 8(6):952.
- Alfaro B, Hernandez I. 2013. Evolution of the indigenous microbiota in modified atmosphere packaged Atlantic horse mackerel (*Trachurus trachurus*) identified by conventional and molecular methods. International journal of food microbiology. 167(2):117–123.
- Ardö Y. 2006. Flavour formation by amino acid catabolism. Biotechnology Advances. 24(2):238–242.
- Aquilanti L, Garofalo C, Osimani A, Clementi F. 2016. Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: an overview. International Food Research Journal. 23(2):429–445.
- Barakat RK, Griffiths MW, Harris LJ. 2000. Isolation and characterization of *Carnobacterium, Lactococcus*, and *Enterococcus* spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. International Journal of Food Microbiology. 62(1-2):83–94.
- Bartowsky EJ, Henschke PA. 2004. The "buttery" attribute of winediacetyldesirability, spoilage and beyond. International Journal of Food Microbiology. 96:235–252.
- Beck J, Brandenstein J, Unterberger S, Hein KR. 2004. Effects of sewage sludge and meat and bone meal co-combustion on SCR catalysts. Applied Catalysis B: Environmental. 49(1):15–25.
- Belitz H-D, Grosch W. 1982. Aroma Substances. In: Food Chemistry. 1st ed. Springer-Verlag. p. 235–280.
- Björkroth J. 2005. Microbiological ecology of marinated meat products. Meat Science. 70(3):477–480.
- Borch E, Molin G. 1989. The aerobic growth and product formation of Lactobacillus, Leuconostoc, Brochothrix, and Carnobacterium in batch cultures. Applied Microbiology and Biotechnology. 30(1):81–
- Borch E, Kant-Muermans ML, Blixt Y. 1996. Bacterial spoilage of meat and cured meat products. International Journal of Food Microbiology. 33(1):103–120.
- Bover-Cid S, Holzapfel WH. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology. 53(1):33–41.

- Cailliez-Grimal C, Edima HC, Revol-Junelles AM, Millière JB. 2007. Short communication: *Carnobacterium maltaromaticum*, the only *Carnobacterium* species in French ripened soft cheeses as revealed by polymerase chain reaction detection. Journal of Dairy Science. 90(3):1133–1138.
- Cailliez-Grimal C, Afzal MI, Revol-Junelles AM. 2014. Carnobacterium. In: Encyclopedia of Food Microbiology. 2nd ed. Elsevier Ltd, Academic Press. p. 379–383.
- Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal. 11(12):2639–2643.
- Calliauw F, De Mulder T, Broekaert K, Vlaemynck G, Michiels C, Heyndrickx M. 2016. Assessment throughout a whole fishing year of the dominant microbiota of peeled brown shrimp (*Crangon crangon*) stored for 7 days under modified atmosphere packaging at 4 °C without preservatives. Food Microbiology. 54:60–71.
- Carter WP. 2010. Development of the SAPRC-07 chemical mechanism. Atmospheric Environment. 44(40):5324–5335.
- Casaburi A, Nasi A, Ferrocino I, Di Monaco R, Mauriello G, Villani F, Ercolini D. 2011. Spoilage-related activity of *Carnobacterium maltaromaticum* strains in air-stored and vacuum-packed meat. Applied and Environmental Microbiology. 77(20):7382–7393.
- Cavalari C, Imazaki P, Pirard B, Vanleyssem R, Lebrun S, Crevecoeur S, Daube G, Macedo R, Clinquart A. 2019. Carnobacterium maltaromaticum as a bioprotective culture against spoilage bacteria in ground beef. In: Book of Abstracts 65th International Congress of Meat Science and Technology. Potsdam/Berlin: ICoMST Organising Committee. p. 149–150.
- Cempírková R. 2007. Contamination of cow's raw milk by psychrotrophic and mesophilic microflora in relation to selected factors. Czech Journal of Animal Science. 52(11):387–393.
- Chenoll E, Macián MC, Elizaquivel P, Aznar R. 2007. Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: population analysis by rDNA-based methods. Journal of Applied Microbiology. 102(2):498–508.
- Chmelař D, Matušek A, Korger J, Durnová E, Steffen M, Chmelařová E. 2002. Isolation of *Carnobacterium piscicola* from human pus--case report. Folia Microbiologica. 47(4):455–457.
- Choi H, Hwang BK, Kim BS, Choi SH. 2020. Influence of pathogen contamination on beef microbiota under different storage temperatures. Food Research International. 132:109118.
- Collins MD, Farrow JAE, Phillips BA, Ferusu S, Jones D. 1987.

 Classification of *Lactobacillus divergens*, *Lactobacillus piscicola*, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, *Carnobacterium*. International Journal of Systematic and Evolutionary Microbiology. 37(4):310–316.
- Dabadé DS, Azokpota P, Nout MR, Hounhouigan DJ, Zwietering MH, den Besten HM. 2015. Prediction of spoilage of tropical shrimp (*Penaeus notialis*) under dynamic temperature regimes. International Journal of Food Microbiology. 210:121–130.
- Dainty RH, Edwards RA, Hibbard CM. 1985. Time course of volatile compound formation during refrigerated storage of naturally contaminated beef in air. Journal of Applied Bacteriology. 59(4):303–309.
- Dainty RH, Edwards RA, Hibbard CM, Marnewick JJ. 1989. Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. Journal of Applied Bacteriology. 66(4):281–289.
- Dallagnol AM, Pescuma M, Espínola NG, Vera M, Vignolo GM. 2021. Hydrolysis of raw fish proteins extracts by *Carnobacterium maltaromaticum* strains isolated from Argentinean freshwater fish. Biotechnology Reports. 29:e00589.
- Dalgaard P, Vancanneyt M, Euras Vilalta N, Swings J, Fruekilde P, Leisner JJ. 2003. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0°C and 25°C. Journal of Applied Microbiology. 94(1):80–89.

- Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. 2022. Nonconventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Critical Reviews in Food Science and Nutrition. 62(4):1105–1118.
- Darbandi A, Ghanavati R, Asadi A, Mirklantari S, Hasannejad-Bibalan M, Lohrasbi V, Sadeghi Kalani B, Rohani M, Talebi M, Pourshafie MR. 2021. Prevalence of bacteriocin genes in *Lactobacillus* strains isolated from fecal samples of healthy individuals and their inhibitory effect against foodborne pathogens. Iranian Journal of Basic Medical Sciences. 24(8):1117.
- De Bruyn IN, Louw AI, Visser L, Holzapfel WH. 1987. *Lactobacillus divergens* is a homofermentative organism. Systematic and applied microbiology. 9(3):173–175.
- De Bruyn IN, Holzapfel WH, Visser L, Louw AI. 1988. Glucose metabolism by *Lactobacillus divergens*. Microbiology. 134(8):2103– 2109.
- De Reu K, Grijspeerdt K, Messens W, Heyndrickx M, Uyttendaele M, Debevere J, Herman L. 2006. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. International Journal of Food Microbiology. 112(3):253–260.
- Doulgeraki AI, Paramithiotis S, Kagkli DM, Nychas GJE. 2010. Lactic acid bacteria population dynamics during minced beef storage under aerobic or modified atmosphere packaging conditions. Food Microbiology. 27(8):1028–1034.
- Doulgeraki AI, Ercolini D, Villani F, Nychas GJE. 2012. Spoilage microbiota associated to the storage of raw meat in different conditions. International Journal of Food Microbiology. 157(2):130–141.
- Edima HC. 2007. *Carnobacterium maltaromaticum*: Caractéristiques physiologiques et potentialités en technologie fromagère. [Master's thesis, University of Nancy].
- Ercolini D, Russo F, Nasi A, Ferranti P, Villani F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Applied and Environmental Microbiology. 75(7):1990–2001.
- Ercolini D, Ferrocino I, La Storia A, Mauriello G, Gigli S, Masi P, Villani F. 2010. Development of spoilage microbiota in beef stored in nisin activated packaging. Food Microbiology. 27(1):137–143.
- Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Vernocchi P, La Storia A, Laghi L, Mauriello G, Guerzoni ME, Villani F. 2011. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Applied and Environmental Microbiology. 77(20):7372–7381.
- Estévez M, Morcuende D, Ventanas S, Cava R. 2003. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. Journal of Agricultural and Food Chemistry. 51(11):3429–3435.
- Franzmann PD, Höpfl P, Weiss N, Tindall BJ. 1991. Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; *Carnobacterium funditum* sp. nov. and *Carnobacterium alterfunditum* sp. nov. Archives of Microbiology. 156:255–262.
- Frétin M, Martin B, Rifa E, Verdier-Metz I, Pomiès D, Ferlay A, Montel M-C, Delbès C. 2018. Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing systems. Scientific Reports. 8(1):200.
- García C, Berdagué JJ, Antequera T, López-Bote C, Córdoba JJ, Ventanas J. 1991. Volatile components of dry cured Iberian ham. Food Chemistry. 41(1):23–32.
- Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaïki L, Lamberet G, Sourice S, Duwat P, Gruss A. 2002. Respiration capacity and consequences in *Lactococcus lactis*. In: Lactic acid bacteria: genetics, metabolism and applications: Proceedings of the Seventh Symposium on lactic acid bacteria: genetics, metabolism and applications, 1–5 September 2002, Egmond aan Zee, the Netherlands. Springer Netherlands. p. 263–269.
- Geeraerts W, De Vuyst L, Leroy F. 2020. Ready-to-eat meat alternatives: A

- study of their associated bacterial communities. Food Bioscience. 37:100681
- Gill CD, Molin G. 1991. Modified atmosphere and vacuum packaging. In: Russel NJ, Gould GW, eds. Food Preservatives. Blackie, London [UK]. p. 172–199.
- González-Gragera E, García-López JD, Boutine A, García-Marín ML, Fonollá J, Gil-Martínez L, Fernández I, Martínez-Bueno M, Baños A. 2024. Improving the quality and safety of fish products with edible coatings incorporating Piscicolin CM22 from a psychrotolerant *Carnobacterium maltaromaticum* strain. Foods. 13(19):3165
- Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. 2002. Food spoilage—interactions between food spoilage bacteria. International Journal of Food Microbiology. 78(1-2):79–97.
- Grant IR, Patterson MF. 1991. A numerical taxonomic study of lactic acid bacteria isolated from irradiated pork and chicken packaged under various gas atmospheres. Journal of Applied Microbiology. 70(4):302–307.
- Hahne J, Isele D, Berning J, Lipski A. 2019. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiology. 79:11–19.
- Hammes WP, Hertel C. 2006. The genera *Lactobacillus* and *Carnobacterium*. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes: Vol. 4. Bacteria: Firmicutes, Cyanobacteria. Springer. p. 320–403.
- Hammes WP, Hertel C. 2009. Genus I. Carnobacterium Collins, Farrow, Phillips, Feresu and Jones 1987. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB, editors. Bergey's Manual of Systematic Bacteriology, Vol. 3, 2nd edition. Springer, New York. p. 549–557.
- Höll L, Hilgarth M, Geissler AJ, Behr J, Vogel RF. 2020. Metatranscriptomic analysis of modified atmosphere packaged poultry meat enables prediction of *Brochothrix thermosphacta* and *Carnobacterium divergens* in situ metabolism. Archives of Microbiology. 202:1945–1955.
- Holley RA, Guan TY, Peirson M, Yost CK. 2002. Carnobacterium viridans sp. nov., an alkaliphilic, facultative anaerobe isolated from refrigerated, vacuum-packed bologna sausage. International Journal of Systematic and Evolutionary Microbiology. 52(5):1881–1885.
- Holzapfel WH, Gerber ES. 1983. *Lactobacillus divergens* sp. nov., a new heterofermentative *Lactobacillus* species producing L (+)-lactate. Systematic and Applied Microbiology. 4(4):522–534.
- Hu ZY, Balay D, Hu Y, McMullen LM, Gänzle MG. 2019. Effect of chitosan, and bacteriocin–producing *Carnobacterium* maltaromaticum on survival of *Escherichia coli* and *Salmonella Typhimurium* on beef. International Journal of Food Microbiology. 290:68–75.
- Hwang BK, Choi H, Choi SH, Kim BS. 2020. Analysis of microbiota structure and potential functions influencing spoilage of fresh beef meat. Frontiers in Microbiology. 11:1657.
- Imazaki PA, Tahiri FN, Ekolo G, Daub G, Linquart A. 2014.
 Morphological and functional characterization of *Carnobacterium maltaromaticum* isolated from vacuum-packed beef with long shelf life. In: Book of Abstracts 60th International Congress of Meat Science and Technology. Punta del Este: ICoMST Organising Committee. p. 1–4.
- Iskandar CF, Cailliez-Grimal C, Rahman A, Rondags E, Remenant B, Zagorec M, Leisner JJ, Borges F, Revol-Junelles A-M. 2016. Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum. Food Microbiology. 58:79–86.
- Iskandar CF, Borges F, Taminiau B, Daube G, Zagorec M, Remenant B, Leisner JJ, Hansen MA, Sørensen SJ, Mangavel C, et al. 2017. Comparative genomic analysis reveals ecological differentiation in the genus *Carnobacterium*. Frontiers in Microbiology. 8:357.
- Islam MA, Roy S, Nabi A, Solaiman S, Rahman M, Huq M, Siddiquee NA, Ahmed N. 2018. Microbiological quality assessment of milk

- at different stages of the dairy value chain in a developing country setting. International Journal of Food Microbiology. 278:11–19.
- Jack RW, Wan J, Gordon J, Harmark K, Davidson BE, Hillier AJ, Wettenhall REH, Hickey MW, Coventry MJ. 1996. Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by *Carnobacterium piscicola* JG126. Applied and Environmental Microbiology. 62(8):2897–2903.
- Jaffrès E, Sohier D, Leroi F, Pilet MF, Prévost H, Joffraud JJ, Dousset X. 2009. Study of the bacterial ecosystem in tropical cooked and peeled shrimps using a polyphasic approach. International Journal of Food Microbiology. 131(1):20–29.
- Jaffrès E, Lalanne V, Macé S, Cornet J, Cardinal M, Sérot T, Dousset X, Joffraud JJ. 2011. Sensory characteristics of spoilage and volatile compounds associated with bacteria isolated from cooked and peeled tropical shrimps using SPME–GC–MS analysis. International Journal of Food Microbiology. 147(3):195–202.
- Joffraud JJ, Leroi F, Roy C, Berdagué JL. 2001. Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon. International Journal of Food Microbiology. 66(3):175–184.
- Jones RJ. 2004. Observations on the succession dynamics of lactic acid bacteria populations in chill-stored vacuum-packaged beef. International Journal of Food Microbiology. 90(3):273–282.
- Joo ST, Kim GD. 2011. Meat quality traits and control technologies. In: Joo ST, editor. Control of meat quality. Kerala, India: Research Signpost. p. 1–29.
- Jørgensen LV, Huss HH, Dalgaard P. 2000. The effect of biogenic amine production by single bacterial cultures and metabiosis on coldsmoked salmon. Journal of Applied Microbiology. 89(6):920–934.
- Kakouri A, Nychas GJE. 1994. Storage of poultry meat under modified atmospheres or vacuum packs: possible role of microbial metabolites as indicator of spoilage. Journal of Applied Microbiology. 76(2):163–172.
- Kim MS, Roh SW, Nam YD, Yoon JH, Bae JW. 2009. Carnobacterium jeotgali sp. nov., isolated from a Korean traditional fermented food. International Journal of Systematic and Evolutionary Microbiology. 59(12):3168–3171.
- Kleib J, Rizk Z, Tannouri A, Abou-Khalil R. 2023. Molecular characterization of lactic acid bacteria in bakery and pastry starter ferments. Microorganisms. 11(11):2815.
- Koort J, Murros A, Coenye T, Eerola S, Vandamme P, Sukura A, Björkroth J. 2005. Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. Applied and Environmental Microbiology. 71(8):4400–4406.
- Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, et al. 2021. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 14: Suitability of taxonomic units notified to EFSA until March 2021. EFSA Journal. 19(7):1–41.
- La Storia A, Ferrocino I, Torrieri E, Di Monaco R, Mauriello G, Villani F, Ercolini, D. 2012. A combination of modified atmosphere and antimicrobial packaging to extend the shelf-life of beefsteaks stored at chill temperature. International Journal of Food Microbiology. 158(3):186–194.
- Lakshmanan R, Dalgaard P. 2004. Effects of high-pressure processing on Listeria monocytogenes, spoilage microflora and multiple compound quality indices in chilled cold-smoked salmon. Journal of Applied Microbiology. 96(2):398–408.
- Lambert AD, Smith JP, Dodds KL. 1991. Shelf life extension and microbiological safety of fresh meat—a review. Food Microbiology. 8:267–297.
- Larrouture-Thiveyrat C, Montel MC. 2003. Effects of environmental factors on leucine catabolism by *Carnobacterium piscicola*. International Journal of Food Microbiology. 81(3):177–184.
- Laursen BG, Bay L, Cleenwerck I, Vancanneyt M, Swings J, Dalgaard P, Leisner JJ. 2005. Carnobacterium divergens and Carnobacterium

- *maltaromaticum* as spoilers or protective cultures in meat and seafood: phenotypic and genotypic characterization. Systematic and Applied Microbiology, 28(2):151–164.
- Le Rhun V, Jaffrès E, Pinon A, Cardinal M, Cornet J, Crétenet M, Joffraud JJ. 2021. Development of a multiplex qPCR method for the specific detection and quantification of *Carnobacterium maltaromaticum* and *C. divergens* in cold-smoked salmon. International Journal of Food Microbiology. 354:109504.
- Leisner JJ, Millan JC, Huss HH, Larsen LM. 1994. Production of histamine and tyramine by lactic acid bacteria isolated from vacuum-packed sugar-salted fish. Journal of Applied Bacteriology. 76(5):417–423.
- Leisner JJ, Greer GG, Dilts BD, Stiles ME. 1995. Effect of growth of selected lactic acid bacteria on storage life of beef stored under vacuum and in air. International Journal of Food Microbiology. 26(2):231–243.
- Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P. 2007.

 **Carnobacterium:* positive and negative effects in the environment and in foods. FEMS Microbiology Reviews. 31(5):592–613.
- Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. 2013. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology and Oncology. 6(1):19.
- Liang R, Yu X, Wang R, Luo X, Mao Y, Zhu L, Zhang Y. 2012. Bacterial diversity and spoilage-related microbiota associated with freshly prepared chicken products under aerobic conditions at 4 °C. Journal of Food Protection. 75(6):1057–1062.
- Macé S, Cardinal M, Jaffrès E, Cornet J, Lalanne V, Chevalier F, Serot T, Pillet MF, Dousset X, Joffraud JJ. 2014. Evaluation of the spoilage potential of bacteria isolated from spoiled cooked whole tropical shrimp (*Penaeus vannamei*) stored under modified atmosphere packaging. Food Microbiology. 40:9–17.
- Madamanchi NR, Runge MS. 2007. Mitochondrial dysfunction in atherosclerosis. Circulation Research. 100:460–473.
- Masson F, Johansson G, Montel MC. 1999. Tyramine production by a strain of *Carnobacterium divergens* inoculated in meat–fat mixture. Meat Science. 52(1):65–69.
- McCabe BJ. 1986. Dietary tyramine and other pressor amines in MAOI regimens: a review. Journal of the American Dietetic Association. 86(8):1059–1064.
- McMullen LM, Stiles ME. 1993. Microbial ecology of fresh pork stored under modified atmosphere at 1, 4.4 and 10°C. International Journal of Food Microbiology. 18(1):1–14.
- Meisel J, Wolf G, Hammes WP. 1994. Heme-dependent cytochrome formation in *Lactobacillus maltaromicus*. Systematic and Applied Microbiology, 17(1):20–23.
- Miller A, Morgan ME, Libbey LM. 1974. *Lactobacillus maltaromicus*, a new species producing a malty aroma. International Journal of Systematic Bacteriology. 24:346–354.
- Mills J, Donnison A, Brightwell G. 2014. Factors affecting microbial spoilage and shelf-life of chilled vacuum-packed lamb transported to distant markets: A review. Meat Science. 98(1):71–80.
- Mokoena MP. 2017. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 22(8):1255.
- Morea M, Baruzzi F, Cocconcelli PS. 1999. Molecular and physiological characterization of dominant bacterial populations in traditional Mozzarella cheese processing. Journal of Applied Microbiology. 87(4):574–582
- Morzel M, Fitzgerald GF, Arendt EK. 1997. Fermentation of salmon fillets with a variety of lactic acid bacteria. Food Research International. 30(10):777–785.
- Muriel E, Antequera T, Petrón MJ, Andrés AI, Ruiz J. (2004). Volatile compounds in Iberian dry-cured loin. Meat Science. 68(3):391–400.
- Nilsson L, Gram L, Huss HH. 1999. Growth control of *Listeria monocytogenes* on cold-smoked salmon using a competitive lactic acid bacteria flora. Journal of Food Protection. 62(4):336–342.

- Noseda B, Islam MT, Eriksson M, Heyndrickx M, De Reu K, Van Langenhove H, Devlieghere F. 2012. Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese *Pangasius hypophthalmus* fillets. Food Microbiology. 30(2):408–419.
- Nychas GJE, Drosinos EH, Board RG. 1998. Chemical changes in stored meat. The Microbiology of Meat and Poultry. 1:288–320.
- Nychas GJE, Marshall DL, Sofos JN. 2007. Meat, poultry and seafood. In: Doyle MP, Beuchat LR, editors. Food microbiology: Fundamentals and frontiers. 3rd ed. Washington, DC: ASM Press. p. 105–140.
- Nychas GJE, Skandamis PN, Tassou CC, Koutsoumanis KP. 2008. Meat spoilage during distribution. Meat Science. 78(1-2):77–89.
- O'Brien JK, Marshall RT. 1996. Microbiological quality of raw ground chicken processed at high isostatic pressure. Journal of Food Protection. 59(2):146–150.
- Odeyemi OA, Burke CM, Bolch CC, Stanley R. 2018. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. International Journal of Food Microbiology. 280:87–99.
- Ouattara B, Simard RE, Holley RA, Piette GJP, Bégin A. 1997. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology. 37(2-3):155–162.
- Palamae S, Patil U, Sinlapapanya P, Hong H, Zhao Y, Zhang B, Benjakul S. 2025. Impact of high-pressure processing on prevention of quality loss and spoilage bacteria diversity in precooked baby clam (*Paphia undulata*) during refrigerated storage. Foods. 14(8):1421.
- Palevich F, Gardner A, Ross C, Mills J, Brightwell G, Palevich N. 2024. Multiple genome sequences of lactic acid bacteria, Carnobacterium divergens and Carnobacterium maltaromaticum strains, isolated from vacuum-packaged lamb meat. Microbiology Resource Announcements. 13(2):e01058-23.
- Papon M, Talon R. 1988. Factors affecting growth and lipase production by meat lactobacilli strains and *Brochothrix thermosphacta*. Journal of Applied Microbiology. 64(2):107–115.
- Peirson MD, Guan TY, Holley RA. 2003. Aerococci and carnobacteria cause discoloration in cooked cured bologna. Food Microbiology. 20(2):149–158.
- Pikuta EV, Hoover RB. 2014. The genus Carnobacterium. In: Holzapfel WH, Wood BJB, editors. Lactic Acid Bacteria: Biodiversity and Taxonomy. p. 109–123.
- Poirier S, Luong NDM, Anthoine V, Guillou S, Membré JM, Moriceau, N, Rezé S, Zagorec M, Feurer C, Frémaux B, et al. 2020. Largescale multivariate dataset on the characterization of microbiota diversity, microbial growth dynamics, metabolic spoilage volatilome and sensorial profiles of two industrially produced meat products subjected to changes in lactate concentration and packaging atmosphere. Data in Brief. 30:105453.
- Pothakos V, Devlieghere F, Villani F, Björkroth J, Ercolini D. 2015. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Science. 109:66–74.
- Prabhakar PK, Srivastav PP, Pathak SS, Das K. 2021. Mathematical modeling of total volatile basic nitrogen and microbial biomass in stored rohu (*Labeo rohita*) fish. Frontiers in Sustainable Food Systems. 5:669473.
- Rahman A, Cailliez-Grimal C, Bontemps C, Payot S, Chaillou S, Revol-Junelles AM, Borges F. 2014. High genetic diversity among strains of the unindustrialized lactic acid bacterium *Carnobacterium maltaromaticum* in dairy products as revealed by multilocus sequence typing. Applied and environmental microbiology. 80(13):3920–3929.
- Ramírez R, Cava R. 2007. Volatile profiles of dry-cured meat products from three different Iberian X Duroc genotypes. Journal of Agricultural and Food Chemistry. 55(5):1923–1931.
- Remenant B, Jaffrès E, Dousset X, Pilet MF, Zagorec M. 2015. Bacterial spoilers of food: behavior, fitness and functional properties. Food Microbiology. 45:45–53.
- Ringø E, Seppola M, Berg A, Olsen RE, Schillinger U, Holzapfel W. 2002.

- Characterization of *Carnobacterium divergens* strain 6251 isolated from intestine of Arctic charr (*Salvelinus alpinus* L.). Systematic and Applied Microbiology. 25(1):120129.
- Rivas-Cañedo A, Fernández-García E, Nuñez M. 2009. Volatile compounds in fresh meats subjected to high pressure processing: Effect of the packaging material. Meat Science. 81(2):321–328.
- Ritchey TW, Seeley Jr HW. 1976. Distribution of cytochrome-like respiration in streptococci. Microbiology. 93(2):195–203.
- Rødbotten M, Kubberød E, Lea P, Ueland Ø. 2004. A sensory map of the meat universe: Sensory profile of meat from 15 species. Meat Science. 68(1):137–144.
- Rodriguez-Caturla MY, Margalho LP, Graça JS, Pia AKR, Xavier VL, Noronha MF, Cabral L, Lemos-Junior WJF, Castillo CJC, Sant'Ana AS. 2025. Bacterial dynamics and volatile metabolome changes of vacuum-packaged beef with different pH during chilled storage. International Journal of Food Microbiology. 427:110955.
- Roh H, Kim DH. 2021. Genotypic and phenotypic characterization of highly alkaline-resistant *Carnobacterium maltaromaticum* V-type ATPase from the dairy product based on comparative genomics. Microorganisms. 9(6):1233.
- Rota V, Schieberle P. 2006. Changes in key odorants of sheep meat induced by cooking. In: ACS symposium series. Vol. 920. Oxford University Press. p. 73-83.
- Säde E, Murros A, Björkroth J. 2013. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiology. 34(2):252–258.
- Saeed A, Yasmin A, Baig M, Khan K, Heyat MBB, Akhtar F, Batool Z, Kazmi A, Wahab A, Shahid M, et al. 2023. Isolation and characterization of *Lactobacillus crispatus*, *Lactococcus lactis*, and *Carnobacterium divergens* as potential probiotic bacteria from fermented black and green olives (*Olea europaea*): An exploratory study. BioMed Research International. 2023(1):8726320.
- Sakala RM, Hayashidani H, Kato Y, Kaneuchi C, Ogawa M. 2002. Isolation and characterization of *Lactococcus piscium* strains from vacuum-packaged refrigerated beef. Journal of Applied Microbiology. 92(1):173–179.
- Samelis J, Kakouri A, Georgiadou KG, Metaxopoulos J. 1998. Evaluation of the extent and type of bacterial contamination at different stages of processing of cooked ham. Journal of Applied Microbiology. 84(4):649–660.
- Samelis J, Björkroth J, Kakouri A, Rementzis J. 2006. Leuconostoc carnosum associated with spoilage of refrigerated whole cooked hams in Greece. Journal of Food Protection. 69(9):2268–2273.
- Schillinger U, Lücke FK. 1987. Identification of lactobacilli from meat and meat products. Food Microbiology. 4(3):199–208.
- Shaw BG, Harding CD. 1984. A numerical taxonomic study of lactic acid bacteria from vacuum-packed beef, pork, lamb and bacon. Journal of Applied Bacteriology. 56(1):25–40.
- Sijpesteijn KA. 1970. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in *Streptococcus lactis* and *Leuconostoc mesenteroides*. Antonie van Leeuwenhoek. 36:335–348.
- Silbande A, Cornet J, Cardinal M, Chevalier F, Rochefort K, Smith-Ravin J, Adenet S, Leroi F. 2018. Characterization of the spoilage potential of pure and mixed cultures of bacterial species isolated from tropical yellowfin tuna (*Thunnus albacares*). Journal of Applied Microbiology. 124(2):559–571.
- Skandamis PN, Nychas GJ. 2001. Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology. 91(6):1011–1022.
- Smialek M, Burchardt S, Koncicki A. 2018. The influence of probiotic supplementation in broiler chickens on population and carcass contamination with *Campylobacter* spp. - Field study. Research in Veterinary Science. 118:312–316.
- Straub BW, Kicherer M, Schilcher SM, Hammes WP. 1995. Die Bildung von biogenen Aminen durch Fermentationsorganismen. Zeitschrift für Lebensmittel-Untersuchung und Forschung: 201:79–82.

- Susiluoto T, Korkeala H, Björkroth KJ. 2003. *Leuconostoc gasicomitatum* is the dominating lactic acid bacterium in retail modified-atmosphere-packaged marinated broiler meat strips on sell-by-day. International Journal of Food Microbiology. 80(1):89–97.
- Tan C, Xiao M, Wu R, Li P, Shang N. 2022. Unraveling the effects of biochemical drivers on the bacterial communities and volatile profiles in refrigerated sturgeon filets at 4°C. Frontiers in Microbiology. 13:849236.
- Talon R, Walter D, Montel MC. 2000. Growth and effect of staphylococci and lactic acid bacteria on unsaturated free fatty acids. Meat Science. 54(1):41–47.
- Thornley M J. 1957. Observations on the microflora of minced chicken meat irradiated with 4 MeV cathode rays. Journal of Applied Bacteriology. 20(2):286–298.
- Van Reckem E, Charmpi C, Van der Veken D, Borremans W, De Vuyst L, Weckx S, Leroy F. 2020. Application of a high-throughput amplicon sequencing method to chart the bacterial communities that are associated with European fermented meats from different origins. Foods. 9(9):1247.
- Vihavainen E, Lundström HS, Susiluoto T, Koort J, Paulin L, Auvinen P, Björkroth KJ. 2007. Role of broiler carcasses and processing plant air in contamination of modified-atmosphere-packaged broiler products with psychrotrophic lactic acid bacteria. Applied and Environmental Microbiology. 73(4):1136–1145.

- Vithanage NR, Yeager TR, Jadhav SR, Palombo EA, Datta N. 2014. Comparison of identification systems for psychrotrophic bacteria isolated from raw bovine milk. International Journal of Food Microbiology. 189:26–38.
- Von Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M. 2015. Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. International Journal of Food Microbiology. 211:57–65.
- Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M. 2004. Effects of fatty acids on meat quality: A review. Meat Science. 66(1):21–32.
- Yang Y, Li M, Li H, Li XY, Lin JG, Denecke M, Gu JD. 2020. Specific and effective detection of anammox bacteria using PCR primers targeting the 16S rRNA gene and functional genes. Science of the Total Environment. 734:139387.
- Zhang P, Gänzle M, Yang X. 2019. Complementary antibacterial effects of bacteriocins and organic acids as revealed by comparative analysis of *Carnobacterium* spp. from meat. Applied and environmental microbiology. 85(20):e01227-19.