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Summary: Research in biomedicine is faced with various problems connected to high-throughput processing – the 
need to handle the high frequency of incoming data and its high-dimensionality by means of a large number of mea-
sured features. Biomedicine needs efficient methods to deal with the enormous amount of collected data as well as 
effective tools to extract meta-data and information. It needs methods to explore data by means of classification and 
to evaluate data and models with respect to accuracy and reliability. Optimization methods have been successfully 
applied to these problems, but the complexity of the data, i.e. varying data density, high dimensionality and model 
reliability, is still very challenging. This paper addresses some important issues concerning the classification of a 
large amount of data: k-nearest-neighbor (kNN)-based and support vector machine (SVM)-based classification, di-
mensionality reduction for kNN and SVM classification, and optimal parameter settings for a SVM-based classifier. 
Dimensionality reduction and parameter selection are accomplished by using an electromagnetism-like metaheuris-
tic (EM). The same EM is used for solving another optimization problem studied in this paper – the maximum be-
tweenness problem (MBP). During radiation hybrid experiments, X-rays are used to fragment the chromosome. The 
probability that the given dose of an X-ray will break the chromosome rises with the distance between chromosomes. 
In this way, markers are placed on two separate chromosomal fragments. By estimating the frequency of the break-
ing points, and thus the distances between markers, it is possible to determine their order in a manner analogous to 
meiotic mapping. In this context, improvement of the radiation experiment is achieved by solving the MBP, i.e. by 
determining the total ordering of the markers that maximizes the number of satisfied constraints.
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Introduction 

In recent years, there has been a tremendous growth 
of interest in applications of optimization in biological and 
medical sciences. In many areas of biomedicine, optimization 
has become an indispensable tool (Pardalos and Romeijn 
2009). It is used in various contexts, e.g. in diagnostic and 
prognostic systems for medical data analysis (Hammer and 
Bonates 2006), for hemodialysis schedule optimization (Choi 
et al. 2017), in protein fold recognition (Yan et al. 2017), etc. 
Optimization is also frequently used for designing and mod-
eling complex systems, which are essential in biomedical and 
biological research, e.g. in solving the maximum between-
ness problem (Filipović et al. 2013), the highly connected 
deletion problem (Hüffner et al. 2014), etc.

Exhaustive enumeration of all optimization techniques 
applied to biomedicine is far beyond the scope of this paper 
and can be investigated in the works of Pardalos et al. (2005) 
and Pardalos and Romeijn (2009), which give an excellent 
review of research in this field.

Data mining and classification 

Data mining is one of the most popular and exciting 
disciplines of applied informatics. It allows researchers to 
discover complex and hidden patterns in data, which can 
potentially lead to completely new conclusions in different 
disciplines, where sometimes even experts in the disciplines 
cannot do better. Nowadays, there is an extremely rapid 
growth in the volume of data stored in biological databases, 
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with increased complexity of data and a very high dimen-
sionality. One particularly active area in biomedicine and 
bioinformatics is the development and application of data 
mining algorithms to obtain more useful information from 
large sets of semi-structured or even unstructured biologi-
cal data. Readers interested in this theme are encouraged 
to study review (Lavrač 1999; Kononenko 2001; Pardalos 
et al. 2007) and position papers (Patel et al. 2009; Seffert et 
al. 2011).

Data mining includes classification, which predicts a 
certain outcome based on a given input. An illustrative ex-
ample of a classification task is given in Fig. 1. In order to 
learn how to predict outcome, the algorithm uses a set of 
training records containing a set of attributes and the re-
spective outcome (Pardalos et al. 2007). The classification 
algorithm then, in the so-called training phase, tries to dis-
cover relationships between the attributes that would make it 
possible to predict an outcome. After this step, the algorithm 
is given a dataset not seen before, called a set of testing re-
cords, which contains the same set of attributes, except for 
the prediction attribute that is not yet known. The algorithm 
analyses the input and produces a prediction – this is the 
testing phase. The prediction accuracy defines the quality of 
the classification algorithm. After the testing phase, classifier 
is used in real-life conditions. The classification process is 
described by the flowchart in Fig. 2.

The illustrative example of a classification task provided 
in Fig. 1, with only two possible outcomes (in versicolor and 
virginica), is also an example of a binary classification prob-
lem. In the binary classification problem, the training dataset 
is composed of feature vectors labelled with one of the two 
possible classes. Multiclass classification problems, where 
feature vectors are labeled with more than two classes, as 
shown in Fig. 3, can be reduced to multiple binary classifica-
tion problems (Allwein et al. 2001).

Classification can be based on mathematical models, 
heuristic models or random models. During the past de-
cades, many powerful and robust classification methods have 
been developed. This paper will deal with two of them: the 
k-nearest neighbor (kNN) and the support vector machine.

1) The k-nearest neighbor (k-NN) classifier is a non-
parametric classification technique that classifies objects 
based on the set of closest training examples in the feature 
space (Pardalos et al. 2007; Grbić et al. 2016). More precisely, 
let us consider the binary classification problem where Dtr is 
a training set composed of Ntr pairs (xi,yi), i=1,…,Ntr, where 
xi∈RN is a N-dimensional feature vector and yi∈{-1,1} is a 
corresponding class label. Given a new training record xnew 
for which the class should be predicted, k-NN finds a set 
of k training records {xi1, xi2,…,xik} that are closest to xnew 
with regard to the predefined distance function. A classifier 
predicts that the class of  xnew is a more frequent class among 
the training records {xi1, xi2,…, xik}. The result of work of a 
3-NN classifier on one record (marked with a triangle) is 
shown in Fig. 4.

2) The second classifier, support vector machine 
(SVM), will be described and explained in detail later in this 
section.

It can be easily proven that both k-NN and SVM clas-
sifications can be mathematically formulated as optimization 
problems (Pardalos et al. 2007; Kartelj 2015).

Dimensionality reduction 

There are two types of benefits for applying dimen-
sionality reduction by feature selection for the classification 
process: firstly, by eliminating unnecessary features, it is pos-
sible to eliminate dataset noise that degrades the quality of 
the classification model; secondly, the problem dimension is 
decreased and the efficiency is increased.

In a biomedical context, dimensionality reduction is 
very often used: for the analysis of 1H nuclear magnetic reso-
nance spectra from human brain tumor biopsies (Gray et al. 
1998), in digital mammography to distinguish benign and 
malignant microcalcifications (Verma and Zhang 2007), etc. 
Also, various optimization techniques are used for dimen-
sionality reduction by feature selection: genetic program-
ming (Gray et al. 1998), fractional 0-1 programming (Busy-
gin et al. 2005), neural-genetic algorithms (Verma and Zhang 
2007), particle swarm optimization (Inbarania et al. 2014), 

Fig. 1. Basic concepts of classification.

Fig. 2. Classification process.
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electromagnetism-like metaheuristics (Kartelj 2015), etc.
The criteria for dimensionality reduction can vary, and 

in terms of classification problems (which are one focus of 
this paper) are usually referred to the classification accuracy, 
model efficiency, level of dimension reduction, or composi-
tion of former criteria. Dimensionality reduction algorithms 
have been utilized as a support for solving various and often 
real problems. There are three general types of dimensional-
ity reduction algorithms (Kartelj 2015): 

1) wrapper methods that use a classification algorithm 
as a black box for the evaluation of feature subsets;

2) filter methods that form feature subsets in the pre-
processing phase, and do not depend on the employed clas-
sification algorithm;

3) embedded methods that form a feature subset in 
the training process and are specific to a given classification 
algorithm.

This paper considers the first type of dimensionality 
reduction (the wrapper method), where the 1-nearest-neigh-
bor classifier (1-NN) and support vector machine (SVM) are 
used as underlying classification mechanisms. In this paper, 
a study of methods for wrapper dimensionality reduction 
has been conducted and its characteristics and potentials 
are discussed.

Support Vector Machine

Support vector machine (SVM) is a supervised machine 
learning technique used for classification and for the estima-
tion of functional forms in regression problems where it is 
necessary to predict a continuous variable (Vapnik 1999). 
SVM uses a training dataset to build a learning function that 
generalizes well and produces correct predictions when used 
on unseen data (Kartelj et al. 2013). As with other prediction 
techniques, it is desirable to check the quality of the learning 
function on a test set prior to applying it on unseen data. 

Here, similarly to k-NN analysis, the binary classifica-
tion problem is studied.  Let the training set, composed of 
Ntr pairs (xi, yi), i=1,…, Ntr (where xi∈RN is an N-dimensional 
feature vector and yi∈{-1,1} is a corresponding class label) be 
denoted Dtr. SVM employs a training dataset Dtrin order to 
find a hyperplane w∙x-b= 0 (w, x∈RN, b∈R), which separates 
feature vectors according to their class labels (Vapnik 1999). 
Additionally, the separating hyperplane should be maximally 
distant from the training vectors on both sides (as shown in 
Fig. 5). In SVM classification, the upper bound for the gen-
eralization error is minimized when the distance between 
vectors and the separating hyper-plane is maximized. The 
important practical property of the bound is its indepen-
dency from the dimensionality of the feature space.

SVM is an extremely successful classification method 
that is extensively applied to problems in biomedicine: in cell 
death discrimination by Raman spectroscopy (Pyrgiotakis et 

Fig. 3. Multiclass classification.
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al. 2009), in mortality prediction of septic patients (Vieiraa 
et al. 2013), to identify and analyze certain post-translation-
al modifications of proteins (Qiua et al. 2017), to classify 
smoking cessation status (Kartelj 2010), to measure cancer 
morbidity and mortality data in a cancer registry (Varlamis 
et al. 2017), etc.

Building a separating hyperplane is not possible when 
the feature space is not linearly separable, as shown in Fig. 
6, which shows one example of a linearly inseparable feature 
space. In the case described in this figure, the original feature 
space is mapped to another where linear separation is pos-
sible. The space transformation leads to an increase in the 
dimensionality of a problem, which is shown in Fig. 7, upon 
applying the following transformation 
F(p, s) = (z1, z2, z3 )=(p2,√2 ps, s2 ). 

Fortunately, this does not affect the overall performance 
of SVM, because SVM makes no direct usage of the feature 
vectors from the mapped space. Instead, SVM employs a 
similarity function, called a kernel function K : RN × RN →  R, 
which is defined for each pair of feature vectors xi, xj and 
represents a similarity (or distance) metric between them. 
The essential property of the kernel function is that it can be 
calculated in the original feature space. In this way, increas-
ing the dimensionality of the space is unimportant from the 
perspective of SVM performance.

It is clear that the quality of the SVM classification de-
pends of the adequate selection of the SVM kernel function. 
Moreover, it was shown that, beside the type of kernel func-
tion, the value of the regularization parameter (or penalty 
parameter) C, which representsthe upper bound for the La-
grange multipliers used in the optimization procedure, is 
also tightly related to the overall classification error of SVM 
(Vapnik 1999). The appropriate value of the regularization 
parameter C is usually determined from alarge positive do-
main of real numbers.  

The most popular models for kernel functions are: 
1) The linear kernel model: K(u, v)= u ∙ v = ∑n

i=1uivi 
– this is a parameter-free model since it takes only feature 
vectors and applies the inner product. Thus, the parametriza-
tion is concerned only with setting an appropriate value of 
the SVM regularization parameter C.

2) The radial basis kernel model:   𝐾𝐾(𝒖𝒖𝒖 𝒖𝒖) = 𝑒𝑒− ∑ (𝑢𝑢𝑖𝑖−𝑣𝑣𝑖𝑖)2

2𝜎𝜎𝑖𝑖2
𝑁𝑁
𝑖𝑖𝑖𝑖    

– the kernel function itself is parameterized and the param-
eter set to be tuned is {C, σ1, σ2,…,σN }, where σi is called a 
scaling factor that corresponds to a radius of the radial basis 
function used for the i-th feature.

Sometimes, it is not even enough to use the most ap-
propriate kernel and its underlying parameter structure. This 
happens in scenarios when training data consists of hetero-
geneous features, usually grouped in several related clusters 
of features. Fortunately, a single SVM model can use many 
kernel functions and hence it is well suited for heterogeneous 
feature spaces. Each kernel can have its own set of param-

Fig. 4 . kNN classification for k =3.

Fig.5. Hyperplane in SVM.
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eters that impact the overall prediction quality. In this paper, 
a method for SVM parameter selection for SVM classifiers 
with previously defined kernels will be introduced and the 
obtained results will be presented.

Maximum betweenness problem

The betweenness problem is a well-known optimization 
problem. For a given finite set S of n objects S={x1, x2,…, 
xn} and a given set C of triples (xi, xj, xk) ∈ S × S × S, the 
betweenness problem is a problem of determination of the 
total ordering of the elements from S, such that triples from 
C satisfy the “betweenness constraint”, i.e. the element xj is 
between the elements xi and xk (Filipović 2011). The problem 
presented in this paper, called the maximum betweenness 

problem (MBP), deals with finding the total ordering that 
maximizes the number of satisfied constraints.

The MBP, as well as other betweenness problems, be-
longs to a class of discrete optimization problems. Those 
problems have important applications in various fields, in-
cluding bioinformatics. For example, the MBP is used for 
solving some physical mapping problems in molecular biol-
ogy (Chor and Sudan 1998). During the radiation hybrid 
experiments, X-rays are used to fragment chromosomes. If 
the markers on chromosomes are more distant, the probabil-
ity that the given dose of an X-ray will break a chromosome 
is greater. In this way, markers are placed on two separate 
chromosomal fragments.

By estimating the frequency of the breaking points, and 
thus the distances between markers, it is possible to deter-
mine their order within a chromosome in a manner analo-
gous to meiotic mapping. In this context, improvement of 
the radiation experiment can be achieved by finding the total 
ordering of the markers that maximizes the number of satis-
fied constraints. The software package RHMAPPER (Lincoln 
1996; Slonim et al. 1997) uses this approach to produce the 
order of framework markers by employing two greedy algo-
rithms for solving the betweenness problem.

A detailed analysis of the experiments of radiation 
hybridization is beyond the scope of this paper and can be 
examined in Goss and Harris (1975) and Cox et al. (1990).

The number of violations, i.e. the number of triples with 
unsatisfied betweenness constraints can be penalized by im-
posing weights. The problem that deals with the minimiza-
tion of the total sum of these weights is called the weighted 
betweenness problem (WBP). This problem also appears in 
computational biology (Christof et al. 1998) – more precise-
ly, in the physical mapping with end probes. In this paper, 
an electromagnetism-like algorithm for solving the MBP is 
studied and compared to alternatives.

Fig. 6. Linearly inseparable feature space (p, s) for classification.

Fig. 7. Same space after transformation 
F(p, s)=(z1,z2,z3)=(p2,√2ps,s2).
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Electromagnetism-like metaheuristic

Problems that have been described in the previous sec-
tion (dimensionality reduction, SVM parameter selection 
and maximum betweenness) will be solved by applying the 
well-known optimization method of electromagnetism-like 
metaheuristic (EM), as shown in Fig. 8.

Description of the EM

The electromagnetism-like metaheuristic proposed in 
Birbil and Fang (2003), represents a population-based opti-
mization technique inspired by mechanisms of interaction 
among electrically charged particles (called EM points). The 
method employs a proficient search process governed by EM 
points, where each of them represents a single candidate so-
lution of the underlying problem. EM points that represent 
better solutions are awarded with higher charge. This is cru-
cial for leading a search process towards promising solution 
regions, because the EM points with a higher charge attract 
other points more strongly. The exact attraction-repulsion 
relationship is given in formula analogues to Coulomb’s Law.

Electromagnetism-like algorithms have turned out to 
be successful in solving many problems with a practical and 
theoretical background: in Su and Lin (2011) the EM tech-

nique has been adopted to solving feature selection prob-
lems. The hybrid algorithm based on EM and simulated an-
nealing is proposed in the paper by Tavakkoli-Moghaddam 
et al. (2009) for a job shop problem. The EM method for 
an uncapacitated multiple allocation hub location problem 
(UMAHLP) has been proposed in Filipović (2011).

The overall structure of the EM algorithm is described 
in the flowchart in Fig. 9. An EM requires only two control 
parameters: Nit is the number of the main loop iterations, 
and M represents the number of EM points. The points are 
first assigned with initial solutions, after which the algorithm 
enters the main loop. The main loop iterates Nit times and 
within iteration every EM point pi, i = 1,…M is subjected to 
the objective value calculation, i.e. to measuring the quality 
of the solution represented by that point.  

The next step is the calculation of the EM points’ charg-
es. As previously mentioned, the charge of a fixed EM point 
will depend on its solution quality, according to the formula:

where N is dimensionality on EM point space, obj is 
an objective function and pbest denotes the EM point with 

Fig. 8. EM application.
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the highest objective value. An illustrative example with EM 
points and their calculated charges is shown in Fig. 10 (A).

After all of the charges are calculated, the total impact 
on each point is calculated by superpositioning particle pair-
wise interaction forces, which are calculated using the follow-

ing formula: 

𝑭𝑭𝒊𝒊 =

{
  
  ∑

(𝒑𝒑𝒋𝒋 − 𝒑𝒑𝒊𝒊)
𝑞𝑞𝑗𝑗 × 𝑞𝑞𝑖𝑖

‖𝒑𝒑𝒋𝒋 − 𝒑𝒑𝒊𝒊‖
2 , 𝑝𝑝𝑗𝑗

𝑜𝑜𝑜𝑜𝑗𝑗 < 𝑝𝑝𝑖𝑖
𝑜𝑜𝑜𝑜𝑗𝑗𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

∑ (𝒑𝒑𝒊𝒊 − 𝒑𝒑𝒋𝒋)
𝑞𝑞𝑗𝑗 × 𝑞𝑞𝑖𝑖

‖𝒑𝒑𝒋𝒋 − 𝒑𝒑𝒊𝒊‖
2

𝑀𝑀

𝑗𝑗=1,𝑗𝑗≠𝑖𝑖
, 𝑝𝑝𝑗𝑗

𝑜𝑜𝑜𝑜𝑗𝑗 ≥ 𝑝𝑝𝑖𝑖
𝑜𝑜𝑜𝑜𝑗𝑗

 

. 
It should be noted that forces are calculated similar to 

Coulomb’s Law in the sense that the force between each two 
particles is proportional to the product of their charges and 
inversely proportional to their distances. Fig. 10 (B) shows 
the calculated force vectors for every EM point given in the 
previous example.

After calculating all of the forces Fi = (Fi
1, Fi

2,…, Fi
N)  

i=1,…M, the movement procedure is applied. The movement 
of each EM point pi = (pi

1, pi
2,…, pi

N) is guided by the direc-
tion and magnitude of corresponding force vector Fi. The 
following formula determines the movements of EM points: 

𝑝𝑝𝑖𝑖𝑘𝑘 =

{ 
 
  𝑝𝑝𝑖𝑖

𝑘𝑘 + 𝜆𝜆 𝐹𝐹𝑖𝑖𝑘𝑘
‖𝑭𝑭𝒊𝒊‖

(1 − 𝑝𝑝𝑖𝑖𝑘𝑘), 𝐹𝐹𝑖𝑖𝑘𝑘 > 0

𝑝𝑝𝑖𝑖𝑘𝑘 + 𝜆𝜆
𝐹𝐹𝑖𝑖𝑘𝑘
‖𝑭𝑭𝒊𝒊‖

𝑝𝑝𝑖𝑖𝑘𝑘, 𝐹𝐹𝑖𝑖𝑘𝑘 ≤ 0
 

  
An illustrative example that describes movements of 

EM points whose charges and forces are calculated is shown 
in Fig. 10 (C).

The remainder of this section elaborates how the previ-
ously described EM can be modified for the dimensionality 
reduction problem, for the SVM parameter selection prob-
lem and for the MBP.

EM for dimensionality reduction

An EM metaheuristic for dimensionality reduction is 
designed as an electromagnetism-like optimization method, 
with some specific aspects that depend on the dimensionality 
reduction problem (Kartelj 2015). Four aspects that make a 
difference between the EM for dimensionality reduction and 
other EM methods will be explained in detail. 

The first distinctive characteristic is the calculation of an 
objective function: all EM points pi, i=1,…M are converted 
from the real-valued vectors to corresponding binary vectors 

si, i=1,…M in the following way: 
𝑠𝑠𝑖𝑖𝑘𝑘 = {0, 𝑝𝑝𝑖𝑖𝑘𝑘 < 0.5

1, 𝑝𝑝𝑖𝑖𝑘𝑘 ≥ 0.5 
 , 

where 1/0 indicates whether the feature is included or not. 
The objective function is calculated in two ways depending 
on the type of classifier: 

(a) if the 1-NN classifier is used, a 5-fold cross-valida-
tion is performed and the objective value is calculated as the 
balanced classification accuracy;

(b) if the SVM classifier is employed, a 2-fold cross-
validation is performed, while the objective value is calcu-
lated as classification accuracy, i.e. the average percentage of 
correctly predicted records.

The second distinctive characteristic is use of the local 

Fig. 9. Outline of the EM method

Fig. 10. EM - (A) calculation of the charges, (B) calculation of the forces, (C) movements of the EM points.
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search (LS) procedure. After calculating the objective value 
for all EM points, the local search procedure is applied to at 
most one of them. At the beginning, the EM for dimension-
ality reduction examines whether a local search (LS) proce-
dure needs to be invoked. The reasons for this examination 
are twofold: 

(a) LS procedures are usually time consuming, and any 
reduction in LS calls can (often significantly) decrease the 
algorithm execution time;

(b) precisely tuned criteria as to whether the LS is or 
is not called can increase the exploratory properties of the 
candidate solution space, directing the search process into 
potentially successful unexplored regions.

Therefore, in this EM method, the LS procedure is 
called only if the conjunction of the following conditions 
is satisfied:

(a) The EM point has the best, or the second best objec-
tive value;

(b) LS has never been applied to the current EM point, 
or its objective value has been changed since the last applica-
tion of LS;

(c) The best objective value has not been changed for at 
least 10 generations;

After that, if the criteria for invoking the LS on the cur-
rent point are satisfied, LS is performed. LS consist of two 
procedures: the first is 1-swap LS with immediate application 
of improvement, and the second is 2-swap LS with applica-
tion of the best-found improvement.

In the 1-swap procedure, a single bit is changed, in-
cluding/excluding the corresponding feature in/from the 
solution. If an improvement is detected, it is immediately 
applied and the LS continues with the new and improved 
point. Procedure 1-swap stops when no new improvement 
can be found.

The second 2-swap procedure consists of the following 
steps: first, the algorithm excludes from the solution a certain 
feature; after that, the algorithm searches for the feature out-
side of the solution, which, when included, produces the im-
provement. The excluded feature is then compared to every 
additional feature, not originally included in the solution, 
and the one providing best improvement is being swapped 
with the excluded feature.  Procedure 2-swap stops when all 
features belonging to the solution have been examined for 
exclusion.

The third distinctive characteristic is scaling: when the 
EM point coordinates (related to the features) have values 
close to 0.5, unnecessary dispersion of the search can ap-
pear, because the crossing of the threshold value occurs too 
frequently. In such cases, the decision as to whether the cor-
responding features are or are not to be included in the solu-
tion changes too often, the convergence of the algorithm is 
weakened and the overall search process becomes unreliable. 

In order to avoid this, the standard EM method is ex-
tended by introducing the specific scaling procedure which 

enables better control of the movements of EM points: 
pi = α si + (1-α) pi, where scaling factor α is a number be-
tween 0 and 1.

The fourth distinctive characteristic is caching: prior to 
calculation of the objective function, vector  is looked-up in 
the cache collection structure. Only if it is not found is the 
1-NN or SVM classifier called to calculate the corresponding 
objective function. Otherwise, the objective value is taken 
from the cache collection.

The described method will be compared with various 
algorithms for dimensionality reduction found in the litera-
ture: the EM algorithm proposed in Chao-Ton and Hung-
Chun (2011), the genetic algorithm from Yang and Honavar 
(1998), and with two variants of the particle swarm optimiza-
tion method proposed in Li-Fei et al. (2012).

EM for SVM parameter selection

The EM for SVM parameter selection is designed as the 
EM optimization method, with some specific aspects that 
depend on the specific problem to be solved – SVM param-
eter selection. This subsection describes elements that make 
the difference between EM for SVM parameter selection and 
other EM methods (Kartelj et al. 2013). 

Electromagnetism-based metaheuristic for SVM pa-
rameter selection is schematically described in Fig. 11. Ele-
ments that make this method distinctive are:

1) Calculation of the objective function value, which re-
flects the quality of the solution represented by the EM point. 
The natural choice for the objective function is estimation of 
the generalization error of the SVM classifier. The straight-
forward estimation of the generalization error is the classifi-
cation error on the training set. Besides this approach, other 
more subtle measures have been proposed. For example, 
leave-one-out (LOO) estimation is performed by removing 
each training vector from the training set, building a clas-
sifier and then testing it on the removed vector. The overall 
estimation of the classification error is finally calculated as 
the sum of errors for all removed training vectors. Relaxation 
of LOO is a k-fold cross-validation-based estimation of the 
expected generalization error. It is calculated by splitting the 
training set into k folds and using each fold as a validation 
set, while the remaining folds are used for the learning phase. 
After k iterations, when each fold is used once for validation, 
error estimation is calculated as an average error across k 
validation sets. The first two steps transform EM point co-
ordinates to SVM parameters and use these parameters to 
calculate kernel matrix values. After that, the objective func-
tion value is calculated with the cross-validation technique. 
For small problem test instances (datasets) with homogenous 
(non-clustered) features, 5-fold cross-validation is employed, 
and for large datasets the classification error estimation is 
based on the 5×2-fold cross-validation.

2) Application of LS techniques, which is done after 
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calculation of the objective value for all EM points. As in 
the previous case, LS separates into two phases – the first 
is the selection of the point at which the LS will be applied, 
and the second is the application of LS. Regarding the first 
phase, candidates for LS application are chosen similarly to 
the previously described procedure: the EM points are first 
sorted in ascending order with respect to the classification 
error estimation, then checked if the EM point fulfills the 

necessary requirements (whether the LS has never been ap-
plied to this point before, or it has been applied, but the value 
has changed since the last application of LS). The second 
phase of the procedure is a search for an improvement of the 
actual parameter setting. The algorithm attempts to find an 
improvement in both directions for every coordinate of the 
selected EM point: left (value 0) and right from the bound-
ary value (value 1). This is performed by increasing the value 
of the coordinate by 1/10 of the remaining interval on the 
left and right sides of the current coordinate value. When 
an improvement is found, it is immediately applied and a 
search for a new improvement is performed in the same di-
rection. If an improvement is not found, the search process 
continues in the opposite direction once. After all encoded 
kernel parameters have been checked for improvement, the 
algorithm ends.

3) Scaling, described in the previous subsection.
4) Caching, described in the previous subsection.
The described method will be compared with other al-

gorithms for SVM parameter selection available in the litera-
ture: the method presented in Keerthi and Lin (2003), the ant 
colony optimization (ACO) method described in Zhang et al. 
(2010), the evolutional strategy (ES) method of Phienthrakul 
and Kijsirikul (2010), and the VNS method proposed in Car-
rizosa et al. (2012).

EM for MBP

Elements of the specific EM for MBP (Filipović et al. 
2013) are as follows:

1) Objective function evaluation. In order to maintain 
search effectiveness of the algorithm, the choice of an ap-
propriate representation of the candidate solution plays a key 
role. In the case of MBP, each EM point in the solution set is 
related to one ordering of the set S = {1, 2,…, n}. This order-
ing is used to determine the number of satisfied constraints 
in the objective function. Let the EM point be represented as 
an n-dimensional vector of real valued coordinates, taking 
values from [0,1] and denoting that vector as p = (p1, p2,…, 
pn), where pi ∈ [0,1], i = 1,…, n. For a given EM point p, each 
element of the set S corresponds to one coordinate of that 
point and vice versa. The point p determines the correspond-
ing ordering relation: if i and j are two elements from S, then 
i⋖ j ↔ pi < pj. Now the objective function that calculates the 
total number of satisfied constraints can be introduced. If all 
coordinates pi are different, then the ordering defined by the 
EM point p induces a 1-1 function ƒ:S→S, which is actually 
a permutation of the set S. This function f is determined by 
sorting the set of indices of the point p by the criteria de-
termined by the ordering relation: if i and j are two indices, 
then i ⋖ j ↔ pi < pj.

2) Combination of LS and caching. The algorithm tries 
to improve each EM point within the iteration. This is ac-
complished by a special local search procedure that combines 

Fig. 11. Flowchart of EM method for SVM parameter selection.
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the 1-swap local search approach and caching technique. 
Both 1-swap and caching are explained in previous subsec-
tions.

3) Scaling has already been described earlier in this sec-
tion.

This EM-like method will be compared with meta-
heuristics for solving the MBP: genetic algorithms with and 
without LS (Savić et al. 2011). Moreover, the exact integer 
programming-based solver CPLEX (IBM Corporation 2016), 
which is capable of dealing only with smaller problems, will 
be used for verification and comparison.

Application of the EM

Each of the following subsections contains results for 
one of the considered problems: dimensionality reduction, 
SVM parameter selection and maximum betweenness. The 
results were obtained by executing experiments on test in-
stances with a biomedical/biological origin (various classifi-
cation datasets from the UCI repository and data extracted 
from the RHMAPPER software package).

EM applied to dimensionality reduction problem

The method is implemented in the C programming lan-
guage and compiled with Visual Studio 2010 compiler. All 
the tests are executed on a PC with 2.4GHz Intel processor 
and 4GB RAM under the Windows 7 operating system.

Two experiments were conducted on two separate col-
lections of classification datasets with biological/biomedi-
cal origin taken from the UCI machine learning repository 
(Lichman 2013).

The first collection, consisting of 6 datasets (described 
in Table 1), is used for comparison. The structure of the table 

culated on the 1-NN classifier. For each dataset, the EM al-
gorithm was executed 10 times. Each execution used a dif-
ferent random seed that consequently produced different 
fold partitioning. For each dataset, the average values of RF 
are recorded. The number of iterations Nit and the number 
of EM points M were kept uniform across all datasets: Nit = 
600, M = 150. The parameter α which controls the scaling 
intensity was set to 0.1.

Table 2 shows comparison results. The first two columns 
of the table are the dataset name and average values obtained 
by EMstc and GA (measured in percentages), respectively. The 
next column FS shows the average optimal solution obtained 
by the full search algorithm after 10 executions. The column 
EM takes value opt if the obtained average solution is equal 
to the average optimal solution of FS, which means that in 
such cases EM obtains optimal solutions in every of 10 ex-
ecutions. The last three columns present the reduction rate 
(in percentages) for the three algorithms that are compared.

The results in Table 2 suggest that EM outperformed the 
other methods in 4 out of 6 cases in terms of feature reduc-
tion rate. It can also be seen that the EM obtained an optimal 
average solution in 5 out of 6 cases, meaning that the success 
rate was 83.3% for these datasets.

Table 3 shows the execution times (in seconds) of the 
compared methods. Five datasets were solved easily with 
FS, all in less than 10 seconds. The studied EM proved to 
be similarly fast on these small datasets, which is the conse-
quence of caching.

Experiment 2: In the second experiment, the EM meth-
od was compared to the PSO1 and PSO2 methods. The com-
parison was based on three datasets from the UCI reposi-
tory. LIBSVM implementation of SVM (Chih-Chung and Lin 
2011) was used as an underlying classification algorithm. The 
error cost parameter of SVM was set toand the radial basis 
function with  was used as a kernel. For multiclass datasets, 
a one-against-rest strategy was used. The maximal number 
of EM iterations was set at. As a resampling technique, 2-fold 
cross-validation was used. The reported values of classifica-
tion accuracy and percentages of retained features are all 
reported as averages after running the EM algorithm  times 
for each dataset.

The comparison is based on the average classification 
accuracy and the average percentage of retained features.

Table 4 shows the following information: dataset name, 
number of features (N), number of classes (Nc), classification 
accuracy of the first and second variant of the PSO algorithm 
(PSO1 and PSO2), optimal classification accuracy obtained 
by the full search algorithm (if it finishes execution - FS), 
the EM classification accuracy (EM), and finally the average 
numbers of retained features (PSO1

d , PSO2
d  and EMd).

The EM reached all average optimal solutions on small-
er datasets where the FS algorithm finished its execution. In 
the remaining large dataset, FS algorithm execution lasted 
more than 3 days, and it was terminated before completion. 

Table 1. DR – Classification datasets used in first xperiment.

dataset N Nc Nr

abalone 8 11 3842

iris 4 3 150

water 38 4 513

wine 13 3 178

wisconsin 9 2 683

yeast 8 9 1479

is as follows: dimensionality (e.g. number of features, de-
noted as N), number of classes (Nc) and dataset size (Nr). 
The previously described EM for dimensionality reduction 
is compared with the EM algorithm (Chao-Ton and Hung-
Chun 2011) denoted as EMstc, and with the genetic algo-
rithm (Yang and Honavar 1998), denoted as GA.

Experiment 1: In order to compare method EM with 
EMstc and GA, the accuracy and feature reduction were cal-
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For comparison it is better if the number of retained features 
is smaller.  It can be noted that the EM reached the smallest 
average number of features in all datasets.

EM applied to SVM parameter selection

In this section, the performances of the studied EM ap-
proach were evaluated in three experiments that were made 
using three collections of small and medium-sized datasets 
with up to 60 features. Table 5 contains information about 
the 6 datasets that were used in the third and the fourth 
experiments. It consists of the following columns: dataset 
name (dataset), number of features (N), number of train-
ing samples (Ntr) and number of testing samples (Nts). The 
datasets are available on the Machine Learning UCI reposi-
tory (Lichman 2013). Table 6, with the same structure as the 
previous one, contains information about the 5 datasets that 
were used in the fifth experiment.

Due to homogeneity, i.e. the absence of clusters of fea-
tures in the first experimental collection, the single-kernel 
RBF model for SVM was adopted. The search process of the 
EM algorithm was guided by the classification error estimate, 
calculated as a 5-fold cross-validation classification error. At 
the end of the search process, when the termination criterion 
was met, the SVM parameters encoded by the best EM point 
were used to train the prediction model. The model was then 

applied to the testing set and the obtained test error was sub-
sequently used for comparison with the other methods.

The EM algorithm was written in the C programming 
language and Visual Studio 2010 compiler was used for com-
pilation. All tests were carried out on the Intel Xeon E5410 @ 
2.34GHz under Windows 7 operating system.

Experiment 3: Concerning EM parameters, in this ex-
periment the setting used is M = 5 and Nit = 5.

Table 7 contains the results from the third experiment, 
i.e. a comparison of the EM method and two other methods 
described in the literature. Columns denoted by KL and VNS 
refer to the results reported in Keerthi and Lin (2003) and 
Carrizosa et al. (2012) after a single execution. The number 
of objective value evaluations, running time (in seconds), 
and the iteration in which the solution was found are also 
presented in the last three columns of the table, denoted by 
EvalEM, tEM and Iterfound  respectively.

The results indicate that the studied EM method out-
performed the other two approaches in 4 out of 6 testing 
benchmarks, it shared the same (best) result on one data set 
and produced the second-best solution on the remaining one.

Experiment 4: For this experiment, the parameters for 
the EM were M = 8 and Nit = 1000. The results from the 
fourth experiment are shown in Table 8. The first three col-
umns show the classification errors of SVM tuned by grid 
search (GS), ant colony optimization (ACO) and the studied 
electromagnetism-like algorithm (EM). Both the grid search 
and ant colony optimization results were taken from Zhang 
et al. (2010). Finally, the corresponding computational times 
(in seconds) are shown in the last three columns (tGS, tACO 
and tEM).

It is evident that the EM outperformed both compari-
son algorithms on all tested datasets. It can also be seen that 
the computational times differed significantly, i.e. the EM 
usually spends less time. This is due to the fact that the EM 
and ACO have different finishing criteria.

Experiment 5: In this instance, in order to make a fair 

Table 2. DR -Accuracy and feature reduction comparison for 1-NN classifier.
dataset EMstc GA FS EM EMRF

stc GARF EMRF

abalone 24.35 24.37 23.99 opt 52.50 50.00 57.50
iris 98.00 98.00 99.39 opt 55.00 60.00 50.00
water 73.34 66.28 - 80.03 54.21 47.89 63.16
wine 98.57 98.57 99.80 opt 58.46 61.54 72.31
Wisconsin 98.25 98.04 98.62 opt 53.33 40.00 48.89
yeast 47.07 47.03 51.15 opt 17.50 12.50 22.50

Table 3. DR - Computational times for 1-NN classifier.

dataset FSt (s) EMstc
t (s) GAt (s) EMt (s)

abalone 8.4 1376.1 7097.2 7.2

iris 0.0 7.5 288.6 0.9

water >3 days 262.8 1574.5 55.7

wine 1.9 153.0 269.9 2.5

Wisconsin 0.6 70.6 2096.8 2.0

yeast 1.2 234.7 2252.3 2.4

Table 4. DR - Accuracy and number of features comparison table for SVM classifier.

dataset N Nc PSO1 PSO2 FS EM PSO1
d PSO2

d EMd

breast-cancer 30 2 96.83 97.66 - 95.92 11.1 12.2 6.4

heart 13 2 84.30 86.01 83.74 opt 8.6 7.5 3.5

wine 13 3 99.19 99.72 97.30 opt 8.3 8.6 6.7
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comparison, the parameters for the EM were set at M = 100 
and Nit = 100. The results from this experiment are presented 
in Table 9. The first column is the dataset name, the second 
and third columns refer to the average classification error of 
the grid search (GS) and (ES), as described in Phienthrakul 
and Kijsirikul (2010). The average results of the previously 
described EM method are presented in the fourth column. 
The last three columns show the number of the objective 
function calculations (EvalEM), the running time (tEM - in sec-
onds) and the average iteration number when the solution 
was found (Iterfound).

The results show that the EM algorithm consistently 
produced the best solutions in all cases.

EM applied to MBP

In this subsection, the computational results of the EM 
method are presented and discussed. The EM implementa-
tion was implemented in the C programming language using 
Visual Studio 2010 programming environment. All tests were 
carried out on Intel Xeon E5410, @2.34 GHz. 

Experiment 6: The instance group named SAV contains 
instances that are described in Savić et al. (2011). The set of 
SAV instances contains a total of 22 problems. The instances 
have various numbers of elements in set S (N = 10, 11, 12, 
15, 20, 30, 50), and various numbers of triples in C (rang-
ing from 20 to 1000). The name of each instance reflects the 
problem dimension: for example, the instance “11-100” in-
dicates that set S has 11 elements and that collection C has 
100 triples from set S. The results obtained by this EM were 
compared to the results obtained by the GAs (with and with-
out local search), as proposed in Savić et al. (2011).

Because experiments reported in Savić et al. (2011) re-
peated the executions 20 times, the same scheme was used 
here: for each instance, the algorithm was run 20 times with 
different random seeds. For this set of instances, the stopping 
criteria was set on a maximum of 100 iterations reached, or 
20 iterations without changing the best solution. Concerning 
the value that represents the number of EM points M, for all 
instances (except the largest one) 20 EM points were used, 
and for the largest one 50 EM points were used.

Table 10 provides the results of this experiment, ob-
tained by the previously described EM on SAV instances. The 
columns in the table are as follows: the first three contain the 
instance name, the optimal solution (if it is known) and the 
best-known solution from the literature (in cases when the 
optimal solution is not known); the best solution obtained 
by the EM in 20 runs is given in the fourth column (named 
EMbest); the average running time used to reach the final EM 
solution for the first time (denoted as t) is given in the fifth 
column; the sixth and seventh columns (marked as ttot and 
iterLS) contain the average total running time and the average 
number of LS steps for finishing the EM, respectively.

The results shown in Table 10 clearly indicate that the 
EM reached all known optimal solutions, except one. For 
all other instances, the EM algorithm achieved the same 
or better results than the current best-known, except for 
two instances.

The computational time for smaller instances (up to 20 

Table 5. PS –Datasets used in the third and partially in the fourth 
experiment.

dataset N Ntr Nts

banana 2 400 4,900

diabetes 8 468 300

heart 13 170 100

splice 60 1,000 2,175

thyroid 5 140 75

breast cancer 9 200 77

Table 6. PS –Datasets used in the fifth experiment.

dataset N Ntr Nts

breast-cancer 10 559 140

Cleveland-heart 13 216 54

Indians-diabetes 8 614 154

liver-disorders 6 276 69

spiral 2 465 117

Table 7. PS - Single RBF kernel on datasets from the third experiment.

dataset KL VNS EM EvalEM tEM (s) Iterfound

banana 11.59 11.61 11.57 57 7.35 1/5

breast 
cancer

29.87 28.57 28.57 41 4.88 2/5

diabetes 24 24.67 23.33 69 9.65 1/5

heart 21 20 19 35 0.61 1/5

splice 10.53 9.93 10.16 49 39.34 3/5

thyroid 5.33 5.33 4 47 0.52 2/5

Table 8. PS - Single RBF kernel on datasets from the fourth experiment.

dataset GS ACO EM tGS (s) tACO (s) tEM (s)

breast cancer 25.97 25.97 23.38 2,547.3 1,437.8 270.44

diabetes 23.33 23 22.67 29,078 19,298 1,837.46

heart 19 16 15 1,446.4 519.58 270.71

thyroid 4 2.67 1.33 702.89 666.2 163.43
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elements and up to 200 constraints) was less than 1 second 
for all instances. For medium and large-scale instances, the 
computational time was less than 12 seconds, with the ex-
ception of the largest instance for which the computational 
time was about 130 seconds. The longer execution time for 
the largest instances was expected because a larger number 
of EM points were created and maintained (50 instead of 20).

Table 11 contains the results of the comparison among 
optimization methods: CPLEX, GA, GA+LS and EM. For 
each of the methods, the solution (denoted as sol), or the 
best and average solutions (denoted as best and avg) and the 
execution time (t) are displayed.

Table 11 shows that the EM outperformed all other ap-
proaches on medium and large instances, comparing the best 
solutions. Comparing the obtained average best solutions, it 
can be seen that EM outperformed the other two methods 
in all instances. 

The computational times of the EM approach are also 
comparable to other methods, especially with GA with LS. 
For large instances, the GA approach without LS was faster 
than the EM, but the EM provided significantly better results.

Experiment 7: Experiments were extended by using 
real problem instances, named REAL, as in Slonim et al. 
(1997). To gather these instances, the RHMAPPER software 
package (a tool for creating genome maps developed at the 
Whitehead Institute/MIT Center for Genome Research) was 
used. Inside the software distribution package, there is a set 
of markers from chromosome 18, as well as a complete set 
of mapped markers from the Whitehead’s May 1996 release. 
This set of markers and the RHMAPPER command were 
used to find triples to generate triples of markers. A total of 
9 problem instances were collected to solve using the previ-
ously described EM algorithm.

In Slonim et al. (1997), the focus was to determine the 
total ordering relation between markers in order to find the 
path of markers of maximal length. To address the problem, 
the authors developed an algorithm for solving the variant 
of the MBP. After the algorithm was executed, the markers 
that did not conform to the total ordering relation were re-
moved and the path of maximal length based on the satisfied 
betweenness constraints was established.

This experiment used the same settings for the EM as 
the previous one: a maximum of 100 iterations reached or 20 
iterations without changing the best solution, 20 EM points 
were used for all instances except the largest one, and 50 EM 
points for the largest one.

The obtained results are shown in Table 12,which has 
the same structure as Table 10: the first three columns con-
tain the instance name, also indicating the problem’s dimen-
sion, optimal solution, if it is known, and the best-known so-
lution from the literature in cases where the optimal solution 
is not known; the best solution obtained by EM in 20 runs is 
given in the fourth column; the average running time used 
to reach the final EM solution for the first time is given in 
the fifth column; the sixth and seventh columns contain the 
average total running time and the average number of local 

Table 9. PS - Single RBF kernel on datasets from the fifth experiment.

dataset GS ES EM EvalEM tEM (s) Iterfound

breast-cancer 13.59 5.44 3.86 11,526 663.49 25.2/100

Cleveland-heart 44.44 21.85 14.81 10,622.8 132.02 9.4/100

Indians-diabetes 35.03 26.7 22.4 11,413.8 1,749.21 52.4/100

liver-disorders 38.26 33.33 26.96 11,510.8 383.47 32/100

spiral 0 0 0 11,543.4 603.2 44.4/100

Table 10. MBP – Results of EM in the sixth experiment.

SAV 
instance

Opt Best EMbest t (s) ttot (s) iterLS

10–20 16 16 16 0.0017 0.03675 2335.4

10–50 29 29 29 0.00505 0.06695 2511.3

10–100 50 50 50 0.01515 0.13505 2901.3

11–20 14 14 14 0.0014 0.0325 2138.4

11–50 33 33 33 0.02135 0.0968 3765.4

11–100 55 55 55 0.0137 0.16275 3505.4

12–20 17 17 17 0.0056 0.0415 2843.6

12–50 34 34 34 0.02605 0.106 4111.5

12–100 56 56 56 0.0366 0.20255 4153.8

15–30 26 26 26 0.01965 0.0805 4272

15–70 – 46 46 0.04615 0.1978 5493.4

15–200 – 106 106 0.21425 0.71025 7139.9

20–40 37 37 37 0.0478 0.16255 6424.5

20–100 – 67 67 0.22035 0.5486 9759.6

20–200 – 116 116 0.38635 1.2053 10

30–60 55 55 54 0.14755 0.4432 11

30–150 – 111 111 0.6347 1.58475 16

30–300 – 185 185 1.3495 3.82755 19

50–100 – 87 87 0.65595 1.7709 20

50–200 – 153 153 2.0437 4.9498 29

50–400 – 265 259 4.32465 12.205 34

50–1000 – 536 536 67.0349 133.796 141
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search steps for finishing the EM, respectively.
From Table 12 it is evident that the EM easily found the 

optimal solutions (which were verified by CPLEX) for all of 
the seven middle-scale instances. The algorithm obtained 
an optimal solution in all 20 runs. For the two largest real 
instances, CPLEX could not find an optimal solution in less 
than 7200 seconds, so that the optimality of the solutions 

obtained by the EM could not be verified. It is evident that 
for these two instances, the EM achieved high-quality solu-
tions in a short time, which was less than 55 seconds for the 
largest instance.

Table 11. MBP - Comparative results and running times in the sixth experiment.

SAV instance
CPLEX GA GA+LS EM

sol t(s) best avg t(s) best avg t(s) best avg t(s)

10–20 16 0.437 16 15.75 0.194 16 15.8 0.088 16 16 0.037

10–50 29 7203.8 29 28.95 0.195 29 29 0.09 29 29 0.067

10–100 42 7201.6 50 48.79 0.652 50 48.75 0.116 50 0.135

11–20 14 2.125 14 13.65 0.2 14 13.65 0.089 14 14 0.032

11–50 33 7203.6 33 32.25 0.214 33 32.25 0.095 33 33 0.097

11–100 55 7201.7 55 53.55 0.243 55 53.55 0.115 55 55 0.163

12–20 17 1.156 17 16.6 0.197 17 16.7 0.09 17 17 0.042

12–50 32 7203.8 33 32 0.228 33 32 0.104 34 33.95 0.106

12–100 54 7202.2 56 54.25 0.246 56 54.35 0.119 56 56 0.203

15–30 26 3.172 25 22.75 0.217 25 22.9 0.101 26 24.75 0.08

15–70 45 7202.8 46 43.95 0.231 46 44.15 0.11 46 46 0.198

15–200 98 7201.4 105 102.85 0.289 105 102.85 0.149 106 105.6 0.71

20–40 37 1.625 36 32.3 0.34 37 32.8 0.171 37 35.45 0.163

20–100 63 7201.8 65 62.1 0.398 66 62.9 0.268 67 66.3 0.549

20–200 111 7201.1 113 111.6 0.4 114 111.9 0.225 116 115.05 1.205

30–60 55 7201.8 51 47.75 0.538 53 48.7 0.341 54 52.01 0.443

30–150 105 7200.8 102 95.65 0.627 111 98.5 0.598 111 104.6 1.585

30–300 165 7200.6 173 164.7 0.749 179 167.7 1.002 185 178.1 3.828

50–100 84 7200.9 84 78 1.147 86 81.25 1.163 87 85.45 1.771

50–200 154 7200.4 140 132.1 1.385 151 143.75 3.837 153 147.2 4.95

50–400 225 7200.3 240 230.15 1.535 265 248 7.8 259 252.25 12.2

50–1000 420 7200.2 504 482.9 2.169 532 514.15 19.86 536 524 133.8

Table 12. MBP - Results of the EM method in the seventh experiment.
REAL instance Opt Best EM (best) t(s) ttot (s) iterLS

15–120 118 118 118 0.0042 0.11485 7220.3

16–142 142 142 142 0.00585 0.1682 8537.3

19–187 176 176 176 0.00985 0.2644 9375.1

20–259 257 257 257 0.01765 0.4302 13690.8

24–436 427 427 427 0.0492 1.2161 18088.9

25–305 305 305 305 0.04765 0.85925 17904.3

25–478 477 477 477 0.09525 1.40615 20204.5

33–1310 – 1285 1285 0.6533 8.48835 40408.1

47–2888 – 2785 2785 7.06745 54.7091 77093.6
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Conclusions

This paper presents the electromagnetism-like approach 
for solving various optimization problems. These problems 
(dimensionality reduction, SVM parameter selection and 
maximum betweenness) have a great importance in biomedi-
cine and bioinformatics. The described EM metaheuristic 
uses an adjustable scaling procedure that provides a well-
suited control of the optimization process.

Concerning dimensionality reduction, the studied EM 
method is capable of dealing with the problem of inherent 
execution time inadequacy of wrapper-based feature selec-
tion methods by employing three improvements. The first is 
an efficiently implemented local search that combines first 
improvement 1-swap and best improvement 2-swap pro-
cedures. The second improvement, which greatly reduces 
execution time, is the careful application of local search, and 
the third is using a caching technique. The experimental re-
sults obtained on UCI datasets reveal the superiority of the 
previously described approach as compared to other wrapper 
approaches with respect to both feature reduction rate and 
running time.

Concerning SVM parameter selection, the prediction 
accuracy of the SVM is highly dependent on the values of 
internal SVM parameters. The traditional approach for solv-
ing the problem of parameter setting, grid search, behaves 
well for the parameter sets of low cardinality. Due to the 
real-valued nature of parameter domains, the efficiency of 
the grid search rapidly decreases with the introduction of 
new parameters. Here, an efficient SVM parameter-tuning 
algorithm based on the EM is described and compared to 
its alternatives.

Concerning the MBP problem, the major improvement 
is an encoding scheme that is used which gives a suitable 
representation of an individual EM point. This specific en-
coding scheme enables fast and efficient transformation from 
the continuous space of EM points to the discrete space of 
permutations and vice versa, following the idea that minor 
movements of EM points should not change the objective 
value. In order to examine the quality of this method, com-
putational experiments are performed on real and artificial 
datasets and test instances from the literature.

It can be concluded that the EM optimization method 
can be successfully applied to various subdomains in bio-
medicine and bioinformatics – from classification to math-
ematical modelling. An EM should be carefully designed 
and implemented, primarily taking into account EM point 
representation, objective function calculation, local search 
and caching.
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