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Summary. Coding genetic variants can have profound effects on protein function. Computational tools for the 
prediction of these effects are used to complement and guide experimental biological studies. Phylogenetic analyses 
that determine the evolutionary relationship among related sequences are commonly used to distinguish between 
functionally significant and insignificant gene variations. Here, we have reviewed applications of the non-align-
ment sequence analyses method for phylogenetic analyses, ISTREE. Furthermore, we assessed how an unsuper-
vised ISTREE-d3 method based on the universal d3 measure responds to this task compared to supervised and 
semi-supervised ISTREE methods that were previously used in two studies. The findings presented here suggest 
that ISTREE-d3 can efficiently substitute for the corresponding supervised models, given that it is more suitable 
for automatic applications. In conclusion, the ISTREE-d3 method has a broad biological relevance and represents a 
promising approach in functional assessment of coding gene variations.
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Introduction

Single nucleotide polymorphisms (SNPs) are the most 
common changes in the human genome and the coding ge-
netic variants can affect protein function (1000 Genomes 
Project Consortium 2012). The effect of an SNP depends on 
its type (silent, missense, nonsense) and position. In the case 
of missense variants, this leads to amino acid substitution 
(AAS). The majority of SNPs, marked as neutral SNPs, can be 
found in the healthy population, while the subset of SNPs in 
the human genome is disease-related and capable of driving 
disease onset and progression. However, the functional ef-
fects of AAS can be ambiguous, especially in complex human 
diseases like cancer, because not all the variations detected 
in the malignant cells are “drivers” of the disease (Stratton 
et al. 2009). AAS can have various consequences – from no 
biological effect (neutral SNPs) to the abolition of protein 
function or acquisition of a new function, leading to dis-
ease start or progression (somatic mutations) (Studer et al. 
2013). In addition to sequencing of the human genome and 

detection of mutations associated with various diseases, it is 
important to monitor and categorize variations in genomes 
of major human pathogens, such as the influenza viruses. 
Detecting functional AAS is clinically useful, but experimen-
tally determining the biological effects of all AASs is costly 
and time-consuming (Thusberg and Vihinen 2009). There-
fore, great efforts are invested in the development of com-
putational methods for predicting the functional relevance 
of AAS. Most of these methods are based on phylogenetic 
analysis, such as PolyPhen-2 (Adzhubei et al. 2010) and SIFT 
(Ng and Henikoff 2001).

Phylogenetic analysis determines the evolutionary re-
lationship inside the family of related sequences. Depending 
on the level of sequence similarity, methods for constructing 
phylogenetic trees can be divided into three groups (David 
2001): (i) maximum parsimony methods (Fitch 1971; Sankoff 
and Cedergren 1983) used for similar sequences, (ii) distance 
methods (Feng and Doolittle 1996) used for sequences that 
share recognizable similarity, and (iii) a probabilistic ap-
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proach that uses maximum likelihood (Felsenstain 1973) or 
sampling methods (Mau et al. 1996). In our current research, 
we focused on the distance methods, which are based on 
distance matrices representing the dissimilarity between each 
pair of sequences. The distance scores are determined from 
the alignment score (Feng and Doolittle 1996) or various 
distance measure models (Jukes and Cantor 1969; Kimura 
1980). The matrix is then transformed into a phylogenetic 
tree using clustering algorithms: the neighbor-joining meth-
od (NJ) (Saitou and Nei 1987), Fitch-Margoliash method 
(Fitch and Margoliash 1987) or the unweighted pair group 
method with arithmetic mean (UPGMA) (Sokal and Mi-
chener 1958).

In the majority of these approaches evolutionary mod-
els are based on the multiple sequence alignment (MSA), 
which has been the standard for sequence comparison for the 
past decades owing to its simple and manifest mechanism. 
However, generating optimal alignment is computationally 
demanding, especially for efficiently querying constantly ex-
panding public genomic and proteomic databases. On the 
other hand, non-alignment approaches, in addition to being 
broadly applicable, are ultra-rapid and not computationally 
demanding (Borozan et al. 2015). They have the potential 
to overcome not only computational, but also fundamental 
limitations of sequence comparison by alignment, such as 
incapability of recognizing more divergent but functionally 
related sequences, overlooking of long-range interactions 
or recognizing the significance of single AAS (Vinga and 
Almeida 2003; Schwende and Pham 2014). The informa-
tional spectrum method (ISM) is a non-alignment method 
based on the assumption that the protein-protein interaction 
encompasses two major steps: (i) recognition and targeting 
between interacting proteins (long-range interactions at dis-
tances greater than 100 Å), and (ii) chemical binding (short-
range interactions at distances less than 5 Å) (Veljkovic and 
Slavic 1972; Veljkovic 1980). ISM transforms a protein se-
quence into a virtual spectrum encompassing peaks (defined 
by corresponding frequency and amplitude) that correlate 
with its protein interactions and functions. 

We have recently developed the informational spec-
trum-based phylogenetic analysis ISTREE, an ISM-based 
phylogenetic algorithm, and demonstrated that it efficiently 
recognizes the functional significance of AASs in the highly 
pathogenic influenza virus (Perovic 2013). The core of the 
ISTREE method consists of distance measures, which are 
defined as follows: d1 − single frequency distance: the ab-
solute difference of the amplitudes on predefined frequency 
F; d2 − amplitude ratio distance: the absolute difference be-
tween the amplitude ratios on predefined frequencies F1 and 
F2; d3 − full spectrum distance: the Minkowski L1 distance 
(Minkowski 1953) between corresponding spectra.

Spectral based phylogenetic analyses, by applying dif-
ferent sequence representations and distance measures on 
protein sequence data, are capable of responding to funda-

mental questions related to the functional significance of 
AASs (Veljkovic et al. 2009b, 2015, 2016). The intrinsic char-
acteristic of models that rely on d1 and d2 is the requirement 
of analyses prior to application of clustering algorithms in 
which characteristic frequencies are predefined, and as such 
they are not suitable for fully automated analyses. Here, in 
two case studies, we will review the capacity of different d 
measures to recognize genetic variations that affect protein 
biological activity, and examine how efficiently the universal 
d3 measure extracts this information compared to d1 and d2.

Informational spectrum method (ISM)

The physicochemical descriptor electron-ion interaction 
potential (EIIP) represents the main energy term of valence 
electrons (Veljkovic and Slavic 1972) and determines the 
long-range properties of biological molecules. The EIIP for 
organic molecules is determined by the following equation 
(Veljkovic 1973; Veljkovic et al. 1985):

W = 0.25Z*sin(1.04πZ*)/2 π    (1)

where Z* is the average quasi-valence number (AQVN) 
calculated by

Z* = ΣmniZi/N   (2)

where ni is the number of atoms of the i-th atomic com-
ponent, Zi is the valence number of the i-th component, m is 
the number of atomic components in the molecule and N is 
the total number of atoms.

The ISM technique assigns the corresponding value of 
EIIP to each amino acid in the protein sequence (Table 1). 
This sequence of numbers, corresponding to the protein se-
quence, is then transformed to a spectrum using a discrete 
Fourier transform defined as:

X(n) = Σm x(m)e-i(2/N)nm, n = 1, 2, ..., N/2    (3)

where N is the total number of points in this series, 
x(m) is the m-th member of a given series and X(n) are the 
Fourier transformation coefficients that describe the am-
plitude, phase and frequency of the sinusoids of which the 
original EIIP signal is composed. The absolute values of a 
complex discrete Fourier transformation determine the am-
plitude spectrum, which is presented as an energy density 
spectrum (Veljkovic et al. 1985):

S(n) = X(n)X*(n) = |X(n)| 2, n = 1, 2, ..., N/2   (4)

In this way protein sequences are analyzed as discrete 
signals, i.e. number series. It is assumed that their points 
are equidistant with the distance d = 1, and therefore the 
maximal frequency in a spectrum is F = 1/2d = 0.5. The fre-
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quency range is independent of the total number of points 
in the sequence, and only the resolution of the spectrum is 
influenced by the total number of points in a sequence. The 
resolution of the N-point sequence is 1/n. The n-th point 
in the spectral function corresponds to a frequency f(n) = 
n/N. Thus, the initial information of the protein defined by 
the sequence of amino acids can be represented in the form 
of an informational spectrum (IS) as a series of frequencies 
and their amplitudes. 

The frequencies in an IS correspond to the distribution 
of structural motifs with defined physicochemical proper-
ties that determine a biological function of a protein. When 
comparing proteins that share the same biological or bio-
chemical function, the ISM technique allows the detection 
of code/frequency pairs which are specific for their common 
biological properties, or which correlate with their specific 
interaction. These common informational characteristics of 
sequences are discovered using a consensus informational 
spectrum (CIS). A CIS of N spectra is obtained by the fol-
lowing equation:

C(j) = Π S(i,j)   (5)

where S(i,j) is the j-th element of the i-th power spec-
trum and C(j) is the j-th element of CIS. Thus, CIS is the 
Fourier transform of the correlation function for the spec-
trum, and any spectral component (frequency) not present 
in all compared informational spectra is eliminated. Peak 
frequencies in the CIS represent the common information 
encoded in the primary structure of analyzed sequences. This 
information corresponds to the mutual long-range interac-

tion between analyzed proteins or their interaction with the 
common interactor. 

Informational spectrum phylogenetic analysis: IS-
TREE method

Single frequency distance (d1)

To construct an informational tree related to a certain 
biological function represented by the previously determined 
characteristic frequency F, derived from the CIS of a family 
of protein sequences, the distance between sequences can be 
defined as the absolute difference of the amplitudes on the 
frequency F. Let X1 and X2 be two sequences, S1 and S2 their 
corresponding spectra. Let F be the characteristic frequency. 
Let A1(F) and A2(F) be amplitudes on frequency F of spectra 
S1 and S2, respectively. Then the distance between X1 and X2 
is defined as:

d1(X1,X2) = | A1(F) – A2(F) |   (6)

Let P be the set of values A(F) for every sequence X. 
Distance d1 is the Euclidean distance on the set of real num-
bers R and therefore it is a valid metric measure on P. It 
satisfies:

1. d1(x,y) = 0, non-negativity
2. d1(x,y) = 0  x=y, identity of indiscernibles
3. d1(x,y) = d1(y,x), symmetry
4. d1(x,z) = d1(x,y) + d1(y,z), triangle inequality

It is also a valid additive evolutionary measure on P. It 
satisfies additivity (four-point condition): two of three sums 
d1(x,y)+d1(z,w), d1(x,z)+d1(y,w), d1(x,w)+d1(y,z), are equal 
and larger than a third sum.

Amplitude ratio distance (d2)

To infer the information that corresponds to the trans-
fer between two biological functions represented by pre-
viously determined characteristic frequencies F1 and F2, 
derived from the CIS of family of protein sequences, the 
distance between sequences can be defined as the absolute 
difference of the amplitude ratios. Let X1 and X2 be two se-
quences, S1 and S2 their corresponding spectra. Let F1 and 
F2 be two characteristic frequencies. Let A1(F1) and A1(F2) 
be amplitudes of spectrum S1 on frequencies F1 and F2, re-
spectively. Let A2(F1) and A2(F2) be amplitudes of spectrum 
S2 on frequencies F1 and F2, respectively. Then the distance 
between X1 and X2 is defined as:

d2(X1,X2) = | A1(F1)/A1(F2) – A2(F1)/A2(F2) |   (7)

Let P be the set of values A(F1)/A(F2) for every sequence 

Table 1. The EIIP values used to encode the amino acids.
Amino acid One letter code EIIP value (Ry)
Leucine L 0.0000
Isoleucine I 0.0000
Asparagine N 0.0036
Glycine G 0.0050
Valine V 0.0057
Glutamic acid E 0.0058
Proline P 0.0198
Histidine H 0.0242
Lysine K 0.0371
Alanine A 0.0373
Tyrosine Y 0.0516
Tryptophan W 0.0548
Glutamine Q 0.0761
Methionine M 0.0823
Serine S 0.0829
Cysteine C 0.0829
Threonine T 0.0941
Phenylalanine F 0.0954
Arginine R 0.0956
Aspartic acid D 0.1263
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X, where A(F1) and A(F2) are spectrum amplitudes of se-
quence S on frequencies F1 and F2, respectively. Set P is a 
subset of the set of real numbers R. Like d1, distance d2 is 
then the Euclidean distance on R, and therefore it is a valid 
metric measure on P. It is also a valid additive evolutionary 
measure on P, it satisfies additivity.

Full spectrum distance (d3)

To compute the informational tree that considers all 
information from the informational spectra of the protein 
sequences, the distance between two sequences can be de-
fined as the Minkowski Lp distance (Manhattan distance for 
p = 1) between corresponding spectra. Let X1 and X2 be two 
sequences, S1 = {S1(n)} and S2 = {S1(n)}, n = 1, 2, ..., N/2, their 
corresponding energy density spectra, then the distance be-
tween X1 and X2 is defined as:

d3(X1,X2) = (Σn=1..N/2|S1(n) – S2(n)|)/N   (8)

where N is the length of the longest sequence. Distance 
d3, as a Minkowski L1 distance, is a valid metric measure as a 
result of the Minkowski inequality (Minkowski 1953).

Differences and similarities between IS distances

Distances d1 and d2 are valid additive evolutionary 
measures and are suitable for the neighbor-joining clustering 
method. Distance d3 is not an additive measure, therefore it 
is more appropriate to use d3 with the UPGMA clustering 
algorithm.

In order to use d1 or d2 distance, it is first necessary to 
determine the characteristic frequencies by means of ISM 
analysis, unlike the d3 distance, which does not need any 
prior analysis.

ISTREE algorithm

1. For each sequence calculate its IS:
a. Convert amino acid sequence into EIIP signal with 

zero mean
b. Zero-padding to the length of the longest signal
c. Apply Fourier transform to signal to generate IS

2. Calculate the CIS of all spectra 
3. Chose the IS distance (d1, d2 or d3) and:

a. Determine characteristic frequency F on CIS (for 
d1 distance) or

b. Determine two characteristic frequencies F1 and F2 
on CIS (for d2 distance) or

c. Do nothing (d3 distance)
4. Depending of the IS distance, calculate the distance 

matrix with the following distance measure:
d1(Xi,Xj) = | Ai(F) – Aj(F) | or
d2(Xi,Xj) = | Ai(F1)/Ai(F2) – Aj(F1)/Aj(F2) | or

d3(Xi,Xj) = (Σn=1..N/2| S1(n) – S2(n)|) / N
5. Infer the phylogenetic tree using neighbor-joining 

(NJ) or UPGMA method

ISTREE properties

The properties of the ISM-based phylogenetic approach 
and main advantages over standard methods are: (i) ISTREE 
is not based on MSA and does not use any substitution 
model, (ii) it is sensitive to the position of mutation and the 
type of the substituted residue, (iii) it is sensitive to a single 
mutation (Perovic 2013).

The ISTREE has high performance in terms of comput-
ing time due to its low algorithm complexity and absence of 
the MSA calculation phase.

Software

For generating the ISM-based trees, we used our ser-
vice ‘ISTREE’ that was developed in the JAVA programming 
language which is freely available on: http://www.vin.bg.ac.
rs/180/istree/. For conventional phylogenetic trees, we used 
MEGA5 software package (Tamura et al. 2011), and for MSA 
calculation we used the MUSCLE algorithm (Edgar 2004).

ISTREE-based semi-supervised analysis of HA1 H5N1 
coding genetic variants

In the last decade, the influenza virus has reemerged 
as one of the most severe threats to human health. The most 
variable segment of the genome of influenza viruses codes 
for hemagglutinin (HA) which mediates the viruses’ entrance 
into the host cells (Wiley and Skehel 1987). HA dominantly 
binds to the receptor specific for the preferable host, but 
this can be affected by genetic variations in HA, leading to a 
switch to a different host. Therefore, to be able to localize the 
potential center of a new influenza pandemic, it is important 
to predict the functional effects of variations in HA.

In a previous publication (Perovic et al. 2013), ISM was 
used in the analysis of the highly pathogenic avian influenza 
virus (HPAIV) type A subtype H5N1. The study of func-
tional aspects of the evolution of the HA1 in Egypt after 2006 
identified and predicted mutations that enhance the virus’ 
human tropism. This was accomplished through a super-
vised analysis of the evolutionary relationship among dif-
ferent strains of HPAIV-H5N1. The dataset contained 526 
HA1 sequences from HPAIV-H5N1 isolated in Egypt in the 
period 2006-2011, which were available in the NCBI (http://
ncbi.nlm.nih.gov/protein) and GISAID (http://platform.gi-
said.org) databases. 

CIS analysis of HA1 protein sequences identified two 
characteristic frequencies that represent two biological func-
tions. The IS frequency component F1 = 0.076 corresponds 
to the tropism of the H5N1-HPAIV, and F2 = 0.236 cor-
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responds to the tropism of the seasonal H1N1 virus. Ex-
amination of the generated phylogenetic tree by the ISTREE 
algorithm identified cluster of specific AASs and predicted 
mutations that increase human tropism of Egyptian H5N1-
HPAIV (Perovic et al. 2013). The predicted mutations were 
further experimentally confirmed to increase HPAIV hu-
man-to-human transmission in vitro (Schmier et al. 2015).

This type of study is semi-supervised because it com-
bines i) an unsupervised ISTREE hierarchical clustering al-
gorithm, with no prior information (annotation) about the 
functional effects of virus gene variants, and ii) calculation of 
d2 distances, which depends on the previous determination 
of characteristic F1 and F2 frequencies. The comparison of 
the d2-based HA phylogenetic tree generated by the ISTREE 
tool with a d3-based tree, which does not require prior analy-
sis, showed similar clustering (Fig. 1). 99.2% of sequences 
are grouped equally in two major clusters in the ISTREE-
d2 tree, d2-G1 and d2-G2 (Fig. 1A), and in the ISTREE-d3 
tree, d3-G1 and d3-G2 groups (Fig. 1B). Subsequent analyses 
of these two clusters revealed a similar result in mutation 
prediction, since both approaches identified the same four 
HA1 mutations that have an increased potential for human 
H5N1-HPAIV infection.

In Fig. 2, the proteins in standard phylogenetic trees 
of HA1 are colored according to ISTREE-d2 clusters G1 
and G2. The conventional trees show a similar grouping of 
proteins to that in ISTREE-generated trees, but with a less 

clear separation into two major clusters as in ISM-based trees 
(Figs 1, 2). 

Comparison of two ISM-based phylogenetic trees (Fig. 
1) suggests that the d3 distance could be used instead of the 
d2 distance in unsupervised analysis and assessment of ge-
netic variants. This accelerates and simplifies the ISM-based 
process, which does not need prior ISM analysis and identi-
fication of characteristic frequencies. 

ISTREE-based supervised analysis of TET2 coding 
genetic variants

A recent example of clinically useful detection of func-
tional mutations arose from the analysis of Tet methylcy-
tosine dioxygenase 2 (TET2), a protein involved in DNA 
demethylation (Tahiliani et al. 2009). TET2 is mutated in 
various cancers, including all types of myeloid malignan-
cies (Delhommeau et al. 2009), in which it represents an 
important marker of disease progression (Grossmann et al. 
2011; Metzeler et al. 2011), minimal residual disease (Jan et 
al. 2012) and response to treatment (Itzykson et al. 2011). 
Previously, several computational methods were used and 
compared to predict the functional effects of AASs in TET2 
(Gemovic et al. 2013a). This study showed that it is especially 
difficult to correctly predict the biological effects of a subset 
of AASs positioned outside TET2’s conserved functional do-
mains (CFDs). This motivated us to develop an algorithm 

Fig. 1. ISM-based phylogenetic analysis 
of Egyptian HA1 H5N1. The trees were 
generated by ISTREE algorithm using A) 
d2 distance (A(0.236)/A(0.076)) and B) d3 
distance.

78    Biologia Serbica 39(1) 



Annotation of the functional impact of coding genetic variants

based on the ISM and statistical analysis for classification of 
the functional effects of AAS outside the CFDs in epigenetic 
regulators associated with myeloid malignancies. The ISM-
based classification method outperformed the most com-
monly used phylogeny-based tools SIFT and PolyPhen-2 in 
terms of prediction efficacy.

From a total of 166 mutations in TET2, gathered from 
literature and the dbSNP database (Sherry et al. 2001), we 
analyzed all 69 coding variants outside CFDs. AAS was 
marked as neutral SNP if it had a predefined frequency in 
a healthy population and/or it was experimentally detected 
in the germline by the original study. On the other hand, 
AAS was marked as a mutation (MUT) if the original work 
experimentally confirmed its somatic status.

The IS frequency F = 0.491 was found to discriminate 
with statistical significance between neutral SNPs and patho-
genic mutations and we based the ISM classification model 
for prediction of AASs in TET2 on this feature. When the 
ISTREE method with d1 distance for the frequency F = 0.491 
is applied to the set of 69 mutated TET2 sequences, two dis-
tinct clusters emerge (Fig. 3A). Analysis of d1-G1 and d1-G2 
clusters showed that 66.67% of sequences classified as MUT 
are grouped in the d1-G1 cluster, and 57.14% of sequences 

classified as SNP are grouped in the d1-G2 cluster. We used 
the following measures of predictive performance:

Accuracy = (TP+TN)/(TP+TN+FP+FN)
Recall = TP/(TP+FN)
Precision = TP/(TP+FP)
F1 = 2*Precision*Recall/(Precision+Recall),
where TP, TN, FP and FN indicate the number of true 

positives (correctly classified coding genetic variations), true 
negatives (correctly predicted coding genetic variations), 
false positives and false negatives, respectively. 

If AAS is classified as MUT when positioned in the 
d1-G1 group and as SNP when positioned in d1-G2 group, 
the accuracy of this model is 0.61. Table 2 shows the perfor-
mance statistics of this method compared to the ISM clas-
sification model. The prediction efficacy of the ISTREE-d1 
model in terms of accuracy is a bit lower than that of the 
ISM model, but it still outperforms the SIFT and PolyPhen-2 
tools (Table 2).

Using the ISTREE-d3 method, we generated the phylo-
genetic tree shown in Fig. 3B. Although there is no clear clus-
tering into two distinct groups, the big branch in the middle 
could be used as a separation boundary and the tree can be 
parted into two distinct groups, the top cluster d3-G1 and 

Fig. 2. MSA-based phylogenetic analysis of Egyptian HA1 H5N1. The trees were generated using standard methods: A) neighbor joining, B) 
maximum likelihood and C) UPGMA.
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the rest of the tree, d3-G2 group (Fig. 3B). The analysis of 
d3-G1 and d3-G2 clusters showed that 62.96% of sequences 
classified as MUT are grouped in the d3-G1 cluster, and 
61.90% of sequences classified as SNP are grouped in the 
d3-G2 cluster. The predictive performance of the ISTREE-
d3 method is equal to the ISM classification model (Table 
2), but the advantage of the ISTREE-d3 model is that it does 
not require prior ISM and statistical analyses to define the 
characteristic IS frequency.

A detailed comparison of ISTREE clusters (Fig. 4) 
revealed that 70% of sequences belong to the same group, 
either G1 or G2, in both ISTREE-d1 and ISTREE-d3. This 
incongruity implies that these two models rely on comple-
mentary information for classification. In future, we will con-
sider a classificatory relying on both features concurrently.

Finally, the conventional phylogenetic trees generat-
ed using a neighbor-joining algorithm with Jones-Taylor-
Thornton (JTT) substitution model (Fig. 5A) and maximum 
likelihood method (Fig. 5B) failed to reveal distinct clus-
ters and are obviously not sensitive to single AAS. This is in 
concordance with previous findings that MSA-based phy-
logenetic analyses are not suitable for the prediction of the 

functional effects of TET2 gene variations in coding regions 
(Gemovic et al. 2013b).

Conclusion

In analyzing the functional significance of coding gene 
variations, ISTREE has an advantage over conventional phy-
logenetic trees because it is significantly more sensitive to the 
effects of a single AAS. ISTREE is based on a non-alignment 
sequence analyses method, ISM, which has been success-
fully applied to this task for decades. However, thus far ISM 
analysis has never been used in a fully automated unsuper-
vised procedure. Here we demonstrated that it is possible to 
overcome this drawback when the universal d3 measure and 
ISTREE-d3 phylogenetic analysis are applied. In future, we 
will perform a comprehensive comparison to conventional 
phylogenetic tree methods in order to establish the full po-
tential of ISTREE-d3 in the functional assessment of coding 
genetic variants.

Table 2. Efficacy of predicting the effects of TET2 coding gene variants by ISM-based and the most commonly used methods SIFT 
and Polyphen-2.

ISM ISTREE-d1 ISTREE-d3 SIFT Polyphen-2

Accuracy 0.623188 0.608696 0.623188 0.57971 0.565217

Recall 0.62963 0.666667 0.62963 0.592593 0.444444

Precision 0.515152 0.5 0.515152 0.470588 0.444444

F1 score 0.566667 0.571429 0.566667 0.52459 0.444444

Fig. 3. Analysis of AASs outside CFDs in TET2 protein using the 
ISTREE tool. The phylogenetic trees were generated using A) d1 
distance (A(0.491)) and B) d3 distance. Mutations are colored according 
to SNP and MUT classes.

Fig. 4. Comparison of ISTREE phylogenetic trees of TET2 sequences. 
The trees were generated by A) d3 distance and B) d1 distance. 
Sequences are colored according to groups G1 and G2 in ISTREE-d3 tree.
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